Breakthrough Computer Chip Lithography Method Developed at RIT

Feb 10, 2006
Bruce Smith
Bruce Smith: RIT professor of microelectronic engineering and director of the Center for Nanolithography Research

A new computer chip lithography method under development at Rochester Institute of Technology has led to imaging capabilities beyond that previously thought possible.

Leading a team of engineering students, Bruce Smith, RIT professor of microelectronic engineering and director of the Center for Nanolithography Research in the Kate Gleason College of Engineering, developed a method—known as evanescent wave lithography, or EWL—capable of optically imaging the smallest-ever semiconductor device geometry. Yongfa Fan, a doctoral student in RIT’s microsystems engineering Ph.D. program, accomplished imaging rendered to 26 nanometers —a size previously possible only via extreme ultraviolet wavelength, Smith says. By capturing images that are beyond the limits of classical physics, the breakthrough has allowed resolution to smaller than one-twentieth the wavelength of visible light, he adds.

The development comes at least five years sooner than anticipated, using the International Technology Roadmap for Semiconductors (public.itrs.net) as a guide, Smith says. The roadmap, created by a consortium of industry groups, government organizations, universities, manufacturers and suppliers, assesses semiconductor technology requirements to ensure advancements in the performance of integrated circuits to meet future needs.

“Immersion lithography has pushed the limits of optical imaging,” Smith says. “Evanescent wave lithography continues to extend this reach well into the future. The results are very exciting as images can be formed that are not supposed to exist.”

Evanescent wave lithography is an “enabling technology” permitting better understanding of how building blocks are created for future microelectronic and nanotechnology devices—the technology that consumers will use over the next five to 10 years, Smith explains.

Smith will present research at Microlithography 2006, a symposium sponsored by the International Society for Optical Engineering, on Feb. 22, in San Jose, Calif.

Source: Rochester Institute of Technology

Explore further: Automakers hire rocket firm to probe air bag problems

add to favorites email to friend print save as pdf

Related Stories

Silver nanocubes make super light absorbers

Dec 06, 2012

Microscopic metallic cubes could unleash the enormous potential of metamaterials to absorb light, leading to more efficient and cost-effective large-area absorbers for sensors or solar cells, Duke University ...

Recommended for you

US spymaster warns over low-level cyber attacks

14 minutes ago

A steady stream of low-level cyber attacks poses the most likely danger to the United States rather than a potential digital "armageddon," US intelligence director James Clapper said on Thursday.

Australian laws on storing phone, Internet records to change

38 minutes ago

(AP)—A parliamentary committee has recommended a major rewrite of draft laws that would force Australian telephone companies and Internet providers to store customers' personal data for the convenience of law enforcement ...

Stock market shrugs off net neutrality vote

42 minutes ago

(AP)—The stock market largely shrugged off the Federal Communications Commission's vote to impose tougher rules on broadband providers like Comcast, Verizon and AT&T to prevent them from creating paid fast lanes for the ...

Key facts on US 'open Internet' regulation

10 hours ago

A landmark ruling by the US Federal Communications Commission seeks to enshrine the notion of an "open Internet," or "net neutrality." Here are key points:

Spotify deals with random shuffle and us mortals

10 hours ago

How do we mortals perceive random sequences? An entry in the question-and-answer site Quora focused on a question involving a music-streaming service Spotify. That question signifies how we perceive what ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.