Breakthrough Computer Chip Lithography Method Developed at RIT

Feb 10, 2006
Bruce Smith
Bruce Smith: RIT professor of microelectronic engineering and director of the Center for Nanolithography Research

A new computer chip lithography method under development at Rochester Institute of Technology has led to imaging capabilities beyond that previously thought possible.

Leading a team of engineering students, Bruce Smith, RIT professor of microelectronic engineering and director of the Center for Nanolithography Research in the Kate Gleason College of Engineering, developed a method—known as evanescent wave lithography, or EWL—capable of optically imaging the smallest-ever semiconductor device geometry. Yongfa Fan, a doctoral student in RIT’s microsystems engineering Ph.D. program, accomplished imaging rendered to 26 nanometers —a size previously possible only via extreme ultraviolet wavelength, Smith says. By capturing images that are beyond the limits of classical physics, the breakthrough has allowed resolution to smaller than one-twentieth the wavelength of visible light, he adds.

The development comes at least five years sooner than anticipated, using the International Technology Roadmap for Semiconductors (public.itrs.net) as a guide, Smith says. The roadmap, created by a consortium of industry groups, government organizations, universities, manufacturers and suppliers, assesses semiconductor technology requirements to ensure advancements in the performance of integrated circuits to meet future needs.

“Immersion lithography has pushed the limits of optical imaging,” Smith says. “Evanescent wave lithography continues to extend this reach well into the future. The results are very exciting as images can be formed that are not supposed to exist.”

Evanescent wave lithography is an “enabling technology” permitting better understanding of how building blocks are created for future microelectronic and nanotechnology devices—the technology that consumers will use over the next five to 10 years, Smith explains.

Smith will present research at Microlithography 2006, a symposium sponsored by the International Society for Optical Engineering, on Feb. 22, in San Jose, Calif.

Source: Rochester Institute of Technology

Explore further: Global boom in hydropower expected this decade

add to favorites email to friend print save as pdf

Related Stories

Silver nanocubes make super light absorbers

Dec 06, 2012

Microscopic metallic cubes could unleash the enormous potential of metamaterials to absorb light, leading to more efficient and cost-effective large-area absorbers for sensors or solar cells, Duke University ...

Recommended for you

US official: Auto safety agency under review

6 hours ago

Transportation officials are reviewing the "safety culture" of the U.S. agency that oversees auto recalls, a senior Obama administration official said Friday. The National Highway Traffic Safety Administration has been criticized ...

Out-of-patience investors sell off Amazon

6 hours ago

Amazon has long acted like an ideal customer on its own website: a freewheeling big spender with no worries about balancing a checkbook. Investors confident in founder and CEO Jeff Bezos' invest-and-expand ...

Ebola.com domain sold for big payout

6 hours ago

The owners of the website Ebola.com have scored a big payday with the outbreak of the epidemic, selling the domain for more than $200,000 in cash and stock.

Hacker gets prison for cyberattack stealing $9.4M

10 hours ago

An Estonian man who pleaded guilty to orchestrating a 2008 cyberattack on a credit card processing company that enabled hackers to steal $9.4 million has been sentenced to 11 years in prison by a federal judge in Atlanta.

Magic Leap moves beyond older lines of VR

11 hours ago

Two messages from Magic Leap: Most of us know that a world with dragons and unicorns, elves and fairies is just a better world. The other message: Technology can be mindboggingly awesome. When the two ...

User comments : 0