Layered approach may yield stronger, more successful bone implants

Aug 17, 2007
Layered approach may yield stronger, more successful bone implants
High-magnification scanning electron microscopy shows (center of micrograph) the leg of an osteoblast (bone precursor), called a cytoplasmic extension, attaching to nano-sized hydroxyapatite crystals, similar to those in natural bone, that make up a CPC implant. Credit: NIST

Researchers from the American Dental Association Foundation (ADAF) and the National Institute of Standards and Technology have developed a new method for layering two kinds of biomaterials into one strong, yet porous unit that may lead to improved reconstruction or repair of bones.

Currently, calcium phosphate cements (CPCs)—water-based pastes of powdered calcium and a phosphate compound that form hydroxyapatite, a material found in natural bone—are used for reconstructing or repairing skeletal defects, but only in bones that are not load-bearing (such as those in the face and skull). Macropores built into the CPCs make it easier for new bone cells to infuse and, eventually, solidify the implant. Until this happens, however, the macropores leave the implant brittle and susceptible to failure.

In the September 2007 issue of Biomaterials, Hockin Xu and colleagues describe a unique approach for providing the strength needed to help an implant better survive its early stages. First, a macroporous CPC paste is placed into the area needing reconstruction or repair. Then, a strong, fiber-reinforced CPC paste is layered onto the first CPC to support the new implant. Once new bone has grown into the macroporous layer and increased its strength, the absorbable fibers in the strong layer dissolve and create additional macroporous channels that promote even more bone tissue ingrowth. This method mimics the natural bone structure in which a strong layer, called cortical bone, covers and strengthens a weaker, macroporous layer (spongy bone).

The two pastes used in the layered CPC method harden in the bone cavity to form an implant that for the first time has both the porosity needed for bone growth and the integrity required for reconstruction or repair of load-bearing bones (such as jaws).

NIST and the ADAF have conducted cooperative research on dental and medical materials since 1928. ADAF researchers focus on development of new dental and biomedical materials, while NIST specializes in the development of improved technologies and methods for measuring materials properties.

Source: National Institute of Standards and Technology

Explore further: 'Designer' nanodevice could improve treatment options for cancer sufferers

add to favorites email to friend print save as pdf

Related Stories

Atomic trigger shatters mystery of how glass deforms

14 hours ago

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

WASP has printer, will travel, to make houses

Oct 16, 2014

At Maker Faire Rome, an Italian 3D printer company is demonstrating a tall, portable machine that will bring 3D-printed dwellings to impoverished countries. WASP has been exploring low-cost solutions to ...

The fix is in: Team studies self-healing polymers

Aug 07, 2014

(Phys.org) —A surfboard that seals its own cracks without having to cure in the sun for days. Underwater structures that can be fixed with less work and downtime. Joints that are almost instantly stronger ...

Muscle-powered bio-bots walk on command (w/ Video)

Jun 30, 2014

(Phys.org) —A new generation of miniature biological robots is flexing its muscle. Engineers at the University of Illinois at Urbana-Champaign demonstrated a class of walking "bio-bots" powered by muscle ...

Recommended for you

Quantum effects in nanometer-scale metallic structures

50 minutes ago

Plasmonic devices combine the 'super speed' of optics with the 'super small' of microelectronics. These devices exhibit quantum effects and show promise as possible ultrafast circuit elements, but current ...

Research unlocks potential of super-compound

1 hour ago

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 0