Mixing Electricity and Water

Aug 09, 2007
Mixing Electricity and Water
SLAC physicist Andrew Fisher holds a section of heavy copper winding used as a conductor in electromagnets, hollowed out to carry low conductivity cooling water.

Every hair dryer in America is tagged with a large warning label not to use it near water for one obvious reason: mixing the two could result in electrocution and even death. But did you know that it is not actually the water that presents the threat?

Water in its purest form is not conductive. Instead, it is the impurities in the water—salts, dust, and so on—that enables it to conduct electricity.

In fact, low conductivity water (LCW)—which is purified and deionized—has been used for decades to cool high-voltage equipment such as magnets and klystrons.

LCW commonly flows through accelerator magnets to cool them. These rectangular, copper or aluminum wires measure up to two inches per side and are coiled in various arrangements to produce magnetic fields of different shapes and strengths. A hole in these copper wires carries LCW to remove heat generated by the electric currents.

"SLAC makes a lot of hot water," said SLAC electrical engineer Martin Berndt, who has designed magnets and power supplies that use LCW at SLAC for over 30 years. "It is a great way of removing heat from high-power electrical devices."

The PEP ring, the SSRL ring and various beam transport lines contain many magnets that use LCW. Unlike hair dryers, the concern with mixing water and electricity in the magnets is not electrocution, but corrosion. Lowering the water's conductivity effectively minimizes this corrosiveness.

Without LCW, the magnets would slowly be eaten away from the inside out and engineers would have to find another way to dissipate as much as 30 megawatts—16,000 hair dryers worth—of power every day.

Source: by Ken Kingery, SLAC Today

Explore further: And so they beat on, flagella against the cantilever

add to favorites email to friend print save as pdf

Related Stories

Final pieces to the circadian clock puzzle found

20 hours ago

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

How are hybridized species affecting wildlife?

1 hour ago

Researchers who transplanted combinations of wild, domesticated, and domesticated-wild hybridized populations of a fish species to new environments found that within 5 to 11 generations, selection could remove ...

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0