LCLS Beam Already in Action

Aug 06, 2007
LCLS Beam Already in Action
The LCLS electron beam incident on a profile monitor at 135 MeV in the injector spectrometer. This image is taken with the transverse deflecting cavity (LOLA) switched on, producing the curvature, which demonstrates that the beam is accelerated on the crest of the radio frequency wave. Credit: SLAC

The Near and Far Experimental halls are still under construction, but already scientists are putting the Linac Coherent Light Source (LCLS) beam to use. The LCLS electron beam, first generated in April, is now traveling from its source near Sector 20, through the Beam Switchyard at the end of the linear accelerator and into End Station A, one of SLAC's original experimental halls.

The one-kilometer journey not only helps the LCLS team commission components along the route, but the beam is already proving useful to scientists working on a diverse set of experiments in End Station A.

In early July, the beam was first pressed into service to help set up a suite of International Linear Collider (ILC) experiments coordinated by Mike Woods. The ILC research is to develop beam instrumentation and to characterize wakefield effects that degrade beam quality. During setup, the ILC experimenters were able to provide diagnostics for the charge, energy spread and jitter of the LCLS beam.

In a new experiment, currently operating during owl shifts, the LCLS beam strikes a copper block, creating a field of radiation. Spare permanent magnet pieces from the LCLS undulators—which will create x-ray pulses in the finished machine—are strategically arranged around the copper to receive an amount of radiation similar to what the magnets would be exposed to in the undulators if the beam went astray.

"We need to learn how much demagnetization takes place so we can protect the undulator magnets for 20 years of operation," said Undulator Physics Manager Heinz-Dieter Nuhn. The information will help in developing a beam loss monitor that can turn the beam off if it will cause too much damage to the magnets.

In mid-August, the beam will test detector components. For 12 hours a day, the LCLS beam will smash into a target at the Beam Switchyard, creating a secondary beam of electrons that simulate particles created in a collision. Jerry Va'vra is testing a prototype for particle identification that might significantly improve particle identification at a next-generation “Super-B Factory.” Six inches upstream, Tim Nelson will test a new kind of readout chip for the tracker and calorimeter of an ILC silicon detector.

In the midst of all this experimentation, the LCLS continues its work. "We're trying to cooperate with other programs while still aggressively commissioning the LCLS," said Commissioning Manager Paul Emma.

Source: by Heather Rock Woods, SLAC Today

Explore further: Spin-based electronics: New material successfully tested

add to favorites email to friend print save as pdf

Related Stories

End dawns for Europe's space cargo delivery role

39 minutes ago

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

Physicists discuss quantum pigeonhole principle

22 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

3 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 0