Graphene sniffs out dangerous molecules

Jul 30, 2007

Researchers at the University of Manchester have used the world’s thinnest material to create sensors that can detect just a single molecule of a toxic gas.

The development of graphene-based devices – which could eventually be used to detect hidden explosives at airports and deadly carbon monoxide in homes – is reported by Dr Kostya Novoselov and Professor Andre Geim in the latest issue of Nature Materials.

Three years ago, Manchester scientists discovered graphene – a one-atom-thick gauze of carbon atoms resembling chicken wire. This incredible new material has rapidly become one of the hottest topics in materials science and solid-state physics.

Now the same Manchester team has found that graphene is extremely sensitive to the presence of minute amounts of gases such as alcohol vapour or extremely toxic carbon monoxide.

They say this sensitivity was unexpected and seems to contradict to the common belief that graphene is extremely chemically inert.

The researchers have shown that gas molecules gently attach themselves to graphene without disrupting its chicken wire structure. They only add or take away electrons from graphene, which results in notable changes in its electrical conductance.

Writing in Nature Materials, researchers from the Manchester Centre for Mesoscience and Nanotechnology, say they have demonstrated that graphene-based sensors allow individual events to be registered when gas molecules attach to the surface.

Dr Novoselov, from The School of Physics and Astronomy, says this is clearly observed in changes of the electrical resistance of graphene, which occur as molecules are attaching one by one to its surface.

“This level of sensitivity is typically millions of times higher than for any other gas detector demonstrated before,” says Novoselov. “Graphene sensors are as sensitive as sensors can be in principle.”

Novoselov and Geim believe graphene-based gas detectors could be readily commercially produced using epitaxial graphene wafers, grown in many laboratories around the world and already good enough for this application.

But they stress that further research is needed to make such detectors sensitive to individual gases.

“At present you could not sniff out a flammable substance hidden in luggage because an increase in air humidity would give false readings,” says Geim. “But this is exactly the same problem that all solid-state gas detectors have encountered, and it can be successfully solved through various detection schemes including filters and analysis of a temperature response. We see no reason why the same cannot be done successfully with graphene.

“This is only the first step on the route to commercial graphene-based sensors but the road ahead is clear,” adds Geim. “Once again, graphene has proved itself to be a material with truly remarkable qualities, allowing observations that no other known material could.”

Source: University of Manchester

Explore further: Tiny carbon nanotube pores make big impact

add to favorites email to friend print save as pdf

Related Stories

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Condom mechanics of graphene

Nov 22, 2013

Wonder material graphene faces its stiffest challenge yet – providing thinner, stronger, safer and more desirable condoms.

Direct 'writing' of artificial cell membranes on graphene

Oct 10, 2013

Graphene emerges as a versatile new surface to assemble model cell membranes mimicking those in the human body, with potential for applications in sensors for understanding biological processes, disease detection ...

Recommended for you

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.