Graphene sniffs out dangerous molecules

Jul 30, 2007

Researchers at the University of Manchester have used the world’s thinnest material to create sensors that can detect just a single molecule of a toxic gas.

The development of graphene-based devices – which could eventually be used to detect hidden explosives at airports and deadly carbon monoxide in homes – is reported by Dr Kostya Novoselov and Professor Andre Geim in the latest issue of Nature Materials.

Three years ago, Manchester scientists discovered graphene – a one-atom-thick gauze of carbon atoms resembling chicken wire. This incredible new material has rapidly become one of the hottest topics in materials science and solid-state physics.

Now the same Manchester team has found that graphene is extremely sensitive to the presence of minute amounts of gases such as alcohol vapour or extremely toxic carbon monoxide.

They say this sensitivity was unexpected and seems to contradict to the common belief that graphene is extremely chemically inert.

The researchers have shown that gas molecules gently attach themselves to graphene without disrupting its chicken wire structure. They only add or take away electrons from graphene, which results in notable changes in its electrical conductance.

Writing in Nature Materials, researchers from the Manchester Centre for Mesoscience and Nanotechnology, say they have demonstrated that graphene-based sensors allow individual events to be registered when gas molecules attach to the surface.

Dr Novoselov, from The School of Physics and Astronomy, says this is clearly observed in changes of the electrical resistance of graphene, which occur as molecules are attaching one by one to its surface.

“This level of sensitivity is typically millions of times higher than for any other gas detector demonstrated before,” says Novoselov. “Graphene sensors are as sensitive as sensors can be in principle.”

Novoselov and Geim believe graphene-based gas detectors could be readily commercially produced using epitaxial graphene wafers, grown in many laboratories around the world and already good enough for this application.

But they stress that further research is needed to make such detectors sensitive to individual gases.

“At present you could not sniff out a flammable substance hidden in luggage because an increase in air humidity would give false readings,” says Geim. “But this is exactly the same problem that all solid-state gas detectors have encountered, and it can be successfully solved through various detection schemes including filters and analysis of a temperature response. We see no reason why the same cannot be done successfully with graphene.

“This is only the first step on the route to commercial graphene-based sensors but the road ahead is clear,” adds Geim. “Once again, graphene has proved itself to be a material with truly remarkable qualities, allowing observations that no other known material could.”

Source: University of Manchester

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Condom mechanics of graphene

Nov 22, 2013

Wonder material graphene faces its stiffest challenge yet – providing thinner, stronger, safer and more desirable condoms.

Direct 'writing' of artificial cell membranes on graphene

Oct 10, 2013

Graphene emerges as a versatile new surface to assemble model cell membranes mimicking those in the human body, with potential for applications in sensors for understanding biological processes, disease detection ...

Controlling magnetic clouds in graphene

Jun 12, 2013

(Phys.org) —Wonder material graphene can be made magnetic and its magnetism switched on and off at the press of a button, opening a new avenue towards electronics with very low energy consumption.

Scientists shed light on magnetic mystery of graphite

Jan 26, 2012

The physical property of magnetism has historically been associated with metals such as iron, nickel and cobalt; however, graphite – an organic mineral made up of stacks of individual carbon sheets – has baffled ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.