New Physics Device May Revolutionize Cancer Treatment

Jul 17, 2007
Innovative Physics Device May Revolutionize Cancer Treatment
Artist's concept of a compact proton therapy system based on a "dielectric wall accelerator." Credit: Lawrence Livermore National Laboratory

Using innovative physics, researchers have proposed a system that may one day bring proton therapy, a state-of-the-art cancer treatment method currently available only at a handful of centers, to radiation treatment centers and cancer patients everywhere.

Thomas R. Mackie, a professor at the University of Wisconsin and co-founder of the radiation therapy company TomoTherapy, will present this new design at next week's annual meeting of the American Association of Physicists in Medicine in Minneapolis.

Compared to the x rays conventionally used in radiation therapy, protons are potentially more effective, as they can deposit more cell-killing energy in their tumor targets and less in surrounding healthy tissue. However, to kill tumors, the protons must be accelerated to sufficiently high energies, which currently must be achieved in large, expensive devices called cyclotrons or synchrocyclotrons that cost hundreds of millions of dollars and occupy a room the size of basketball courts.

At the meeting, Mackie and his colleagues will present a proton-therapy design based on a much smaller device known as a "dielectric wall accelerator" (DWA). Mackie is part of a multidisciplinary team that includes his institutions as well as Lawrence Livermore National Laboratory and the University of California, Davis.

The DWA, currently being built as a prototype at Livermore, can accelerate protons to up to 100 million electron volts in just a meter. A two-meter DWA could potentially supply protons of sufficiently high energy to treat all tumors, including those buried deep in the body, while fitting in a conventional radiation treatment room.

The DWA is a hollow tube whose walls consist of a very good insulator (known as a dielectric). When most of the air is removed from the tube to create a vacuum, the tube can structurally withstand the very high electric-field gradations necessary for accelerating protons to high energies in a short distance.

In addition to its smaller size, a DWA-based proton therapy system would have another benefit—it could vary both proton energy and proton-beam intensity, two variables that cannot both be adjusted at the same time in existing proton-treatment facilities. This capability could lead to "intensity-modulated proton therapy" (IMPT), the proton version of the x-ray-based intensity modulated radiation therapy (IMRT) technique which has become a popular method for delivering precise radiation doses to the parts of a tumor.

Mackie cautions that clinical trials of the system are at least five years away. But if the DWA approach proves feasible, protons may eventually represent a widespread, rather than limited, option for treating cancer.

Source: American Institute of Physics

Explore further: How the hummingbird achieves its aerobatic feats

add to favorites email to friend print save as pdf

Related Stories

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

Compact proton therapy for fight against cancer

Jun 10, 2014

The future face of modern-day anti-cancer therapy based on charged particles like protons could potentially involve using laser accelerators. However, these facilities will need to be reduced in terms of ...

Applying particle physics expertise to cancer therapy

May 13, 2011

(PhysOrg.com) -- Physicists at the University of California, Santa Cruz, are working with medical researchers at Loma Linda University Medical Center to develop a new imaging technology to guide proton therapy ...

Recommended for you

How the hummingbird achieves its aerobatic feats

7 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.