Novel 'Dual-Grating Assisted Directional Coupler' Developed For Nanophotonics

Jan 30, 2006

A collaborative research project between Innos (UK R&D company) and the universities of Surrey, Southampton and the Politecnico di Bari in Italy has developed a novel method for coupling light from an optical fibre to 200nm thick silicon waveguides in optical communications. The project has demonstrated the highest recorded coupling efficiency of 55%.

"There have been several published methods of achieving an effective coupling in theory, however no grating-based coupler has achieved as high a demonstrated efficiency as the work we have completed with Innos, Southampton University and Politecnico di Bari. It is also one of the best overall published results by any other method to date," says Research Fellow at the Advanced Technology Institute at the University of Surrey, Dr Goran Masanovic.

With the ever-decreasing size of communications devices optical technologies are at nanometre scale. The control and manipulation of light at this size (nanophotonics) can affect polarisation, loss and coupling issues. One of the key issues to be solved in nanophotonics is the coupling of light between an optical fibre and a semiconductor waveguide. Due to the difference in thicknesses and refractive indices between the two structures a direct coupling currently results in a loss as high as 20dB.

Coupling further becomes a problem as optic fibres typically have a core dimension of 9µm and the dimensions of silicon devices are often reduced to improve packing density and improve the performance of the photonic circuit. This often results in cross-sectional dimensions of silicon-based waveguides of ~1µm or less.

Commenting on the project, Sales and Marketing Director from Innos, Dr Alec Reader stated, "Advances such as fast silicon modulators and silicon lasers in silicon photonics has sparked interest recently not only from academia but from world-leading companies as devices are reduced in size. Coupling is just one roadblock to producing smaller devices, and we are pleased to have helped produce such an impressive proven result. We are expecting to work with the University of Surrey again on future European and EPSRC-funded projects."

Source: University of Surrey

Explore further: High power laser sources at exotic wavelengths

add to favorites email to friend print save as pdf

Related Stories

Ultrabright lasers help switch single photons

Mar 31, 2014

(Phys.org) —In the search for a single photon source, researchers in Australia and France have achieved a major step towards a turn-key source of individual, precisely tailored photons from an integrated ...

Converting waste heat into electricity

Mar 25, 2014

Bruce White worked with semiconductors and transistors at Motorola and Texas Instruments. But when he left industry for a position on Binghamton University's faculty, the materials scientist decided to take ...

Hot nanoparticles for cancer treatments

Mar 24, 2014

Nanoparticles have a great deal of potential in medicine: for diagnostics, as a vehicle for active substances or a tool to kill off tumours using heat. ETH Zurich researchers have now developed particles ...

A layered nanostructure held together by DNA

Mar 20, 2014

(Phys.org) —Dreaming up nanostructures that have desirable optical, electronic, or magnetic properties is one thing. Figuring out how to make them is another. A new strategy uses the binding properties ...

Recommended for you

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...