Novel 'Dual-Grating Assisted Directional Coupler' Developed For Nanophotonics

Jan 30, 2006

A collaborative research project between Innos (UK R&D company) and the universities of Surrey, Southampton and the Politecnico di Bari in Italy has developed a novel method for coupling light from an optical fibre to 200nm thick silicon waveguides in optical communications. The project has demonstrated the highest recorded coupling efficiency of 55%.

"There have been several published methods of achieving an effective coupling in theory, however no grating-based coupler has achieved as high a demonstrated efficiency as the work we have completed with Innos, Southampton University and Politecnico di Bari. It is also one of the best overall published results by any other method to date," says Research Fellow at the Advanced Technology Institute at the University of Surrey, Dr Goran Masanovic.

With the ever-decreasing size of communications devices optical technologies are at nanometre scale. The control and manipulation of light at this size (nanophotonics) can affect polarisation, loss and coupling issues. One of the key issues to be solved in nanophotonics is the coupling of light between an optical fibre and a semiconductor waveguide. Due to the difference in thicknesses and refractive indices between the two structures a direct coupling currently results in a loss as high as 20dB.

Coupling further becomes a problem as optic fibres typically have a core dimension of 9µm and the dimensions of silicon devices are often reduced to improve packing density and improve the performance of the photonic circuit. This often results in cross-sectional dimensions of silicon-based waveguides of ~1µm or less.

Commenting on the project, Sales and Marketing Director from Innos, Dr Alec Reader stated, "Advances such as fast silicon modulators and silicon lasers in silicon photonics has sparked interest recently not only from academia but from world-leading companies as devices are reduced in size. Coupling is just one roadblock to producing smaller devices, and we are pleased to have helped produce such an impressive proven result. We are expecting to work with the University of Surrey again on future European and EPSRC-funded projects."

Source: University of Surrey

Explore further: Bake your own droplet lens

add to favorites email to friend print save as pdf

Related Stories

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

Ultrabright lasers help switch single photons

Mar 31, 2014

(Phys.org) —In the search for a single photon source, researchers in Australia and France have achieved a major step towards a turn-key source of individual, precisely tailored photons from an integrated ...

Converting waste heat into electricity

Mar 25, 2014

Bruce White worked with semiconductors and transistors at Motorola and Texas Instruments. But when he left industry for a position on Binghamton University's faculty, the materials scientist decided to take ...

Recommended for you

Bake your own droplet lens

18 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

Precise control of optical frequency on a chip

Apr 23, 2014

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

How do liquid foams block sound?

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.