Scientists Create Breakthrough Sensor Capable of Detecting Individual Molecules

Jul 06, 2007

Applied physicists at the California Institute of Technology have figured out a way to detect single biological molecules with a microscopic optical device. The method has already proven effective for detecting the signaling proteins called cytokines that indicate the function of the immune system, and it could be used in numerous medical applications, such as the extremely early detection of cancer and other diseases, as well as in basic biological research.

According to Kerry Vahala, the Jenkins Professor of Information Science and Technology and professor of applied physics, this new detection technology revolves around a previous invention from his lab called an "ultra-high-Q microtoroid resonator."

This is a donut-shaped glass device that is narrower than the width of a human hair and that is able to hold on to light very efficiently. Vahala explains that "the detector relies upon this feature to boost sensitivity to the single molecule level, albeit in a surprising way."

He notes that the original idea was to detect an optical response elicited directly by molecules landing on the donut-shaped device. "As work proceeded, however, we were able to observe single molecule detection events with far greater ease than was originally expected." This pleasant surprise was traced to minute amounts of heat generated when molecules interact with the light stored within the microtoroid resonator. "This thermo-optic response boosts the sensitivity a millionfold," explains Vahala. Andrea Armani, who works in Vahala's laboratory and developed the detector as part of her thesis research, notes that besides being extremely sensitive, the device is also programmable by coating its surface with substances that react to a specific biological molecule.

"The molecule which the device is targeting, whether it is a growth factor or a chemical like TNT, is determined by the surface treatment of the glass microtoroid. Fortunately, the biology and chemistry communities have developed very effective techniques for attaching proteins to glass surfaces, because most microscope slides are glass. All we had to do was adopt those techniques to fit our structure," explains Armani.

Vahala notes that "this combination of single-molecule sensitivity and programmable detection, that is, without labeling of the target molecule, has not been demonstrated before, and enables new kinds of tests and measurement."

Scott Fraser, the Rosen Professor of Biology, professor of bioengineering, and collaborator on the project, explains further that "this technology should lead to many applications for biological experiments, medical tests, and even medical treatments. The advantages are its ability to detect extremely small numbers of molecules, and the fact that there's no need to label target molecules. At this sensitivity level, it is possible even to study growth factors being emitted in real time from a single cell." Fraser adds, "This is the only sensor that currently has the requisite sensitivity and rapidity."

This type of experiment is important in monitoring how environmental changes, such as pH or temperature, can influence a cell's behavior. Currently, these types of experiments must be performed with populations of millions of cells, which often blurs results because it is like trying to pick out a single voice in a choir.

In the July 5 issue of the online journal Science Express, the team reports on its success in detecting a series of different molecules, including one immune response signaling protein, interleukin-2 (IL-2). For the latter, the targeting molecule the devices were coated with was a specific antibody that recognized IL-2. This surface preparation allowed the detector surface to bind the IL-2, while the thermo-optic mechanism provided the sensitivity required to detect the IL-2 at the single molecule level, even in serum (blood with the clotting factors and red blood cells removed).

"What is most exciting about this device is its ability to get single molecule results in real time without labeling. Because it can be programmed to detect almost any biological molecule, it is a universal detector, and as such opens the door to a whole field of new experiments," adds Armani.

Source: Caltech

Explore further: New terahertz device could strengthen security

add to favorites email to friend print save as pdf

Related Stories

Mysterious glowworm found in Peruvian rainforest

Nov 21, 2014

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

How photosynthesis changed the planet

Nov 20, 2014

Two and a half billion years ago, single-celled organisms called cyanobacteria harnessed sunlight to split water molecules, producing energy to power their cells and releasing oxygen into an atmosphere that ...

Recommended for you

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

New technique allows ultrasound to penetrate bone, metal

Nov 20, 2014

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.