Guessing robots predict their environments, navigate better

Jun 12, 2007
Guessing robots predict their environments, navigate better
C.S. George Lee, from left, a Purdue professor of electrical and computer engineering, works with doctoral student H. Jacky Chang to operate mobile robots using a software algorithm that enables robots to make "educated guesses" about what lies ahead as they traverse unfamiliar surroundings. The approach reduces the amount of time it takes to successfully navigate those environments. Future research will extend the concept to four robots working as a team to explore an unknown environment by sharing the mapped information through a wireless network. (Purdue News Service photo/David Umberger)

Engineers at Purdue University are developing robots able to make "educated guesses" about what lies ahead as they traverse unfamiliar surroundings, reducing the amount of time it takes to successfully navigate those environments.

The method works by using a new software algorithm that enables a robot to create partial maps as it travels through an environment for the first time. The robot refers to this partial map to predict what lies ahead.

The more repetitive the environment, the more accurate the prediction and the easier it is for the robot to successfully navigate, said C.S. George Lee, a Purdue professor of electrical and computer engineering who specializes in robotics.

"For example, it's going to be easier to navigate a parking garage using this map because every floor is the same or very similar, and the same could be said for some office buildings," he said.

Both simulated and actual robots in the research used information from a laser rangefinder and odometer to measure the environment and create the maps of the layout.

The algorithm modifies an approach, called SLAM, which was originated in the 1980s. The name SLAM, for simultaneous localization and mapping, was coined in the early 1990s by Hugh F. Durrant-Whyte and John J. Leonard, then engineers at the University of Oxford in the United Kingdom.

SLAM uses data from sensors to orient a robot by drawing maps of the immediate environment. Because the new method uses those maps to predict what lies ahead, it is called P-SLAM.

"Its effectiveness depends on the presence of repeated features, similar shapes and symmetric structures, such as straight walls, right-angle corners and a layout that contains similar rooms," Lee said. "This technique enables a robot to make educated guesses about what lies ahead based on the portion of the environment already mapped."

Research findings were detailed in a paper that appeared in April in IEEE Transactions on Robotics, published by the Institute of Electrical and Electronics Engineers. The paper was authored by doctoral student H. Jacky Chang, Lee, assistant professor Yung-Hsiang Lu and associate professor Y. Charlie Hu, all in Purdue's School of Electrical and Computer Engineering.

Potential applications include domestic robots and military and law enforcement robots that search buildings and other environments.

The Purdue researchers tested their algorithm in both simulated robots and in a real robot navigating the corridors of a building on the Purdue campus. Findings showed that a simulated robot using the algorithms was able to successfully navigate a virtual maze while exploring 33 percent less of the environment than would ordinarily be required.

Future research will extend the concept to four robots working as a team, operating with ant-like efficiency to explore an unknown environment by sharing the mapped information through a wireless network. The researchers also will work toward creating an "object-based prediction" that recognizes elements such as doors and chairs, as well as increasing the robots' energy efficiency.

Robots operating without the knowledge contained in the maps must rely entirely on sensors to guide them through the environment. Those sensors, however, are sometimes inaccurate, and mechanical errors also cause the robot to stray slightly off course.

The algorithm enables robots to correct such errors by referring to the map, navigating more precisely and efficiently.

"When the robot makes a turn to round a corner, let's say there is some mechanical error and it turns slightly too sharp or not sharply enough," Lee said. "Then, if the robot continues to travel in a straight line that small turning error will result in a huge navigation error in the long run."

Source: Purdue University

Explore further: Robots recognize humans in disaster environments

add to favorites email to friend print save as pdf

Related Stories

Cassini caught in Hyperion's particle beam

Oct 17, 2014

Static electricity is known to play an important role on Earth's airless, dusty moon, but evidence of static charge building up on other objects in the solar system has been elusive until now. A new analysis ...

Rock-dwelling microbes remove methane from deep sea

Oct 15, 2014

Methane-breathing microbes that inhabit rocky mounds on the seafloor could be preventing large volumes of the potent greenhouse gas from entering the oceans and reaching the atmosphere, according to a new ...

Researchers develop world's thinnest electric generator

Oct 15, 2014

Researchers from Columbia Engineering and the Georgia Institute of Technology report today that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically ...

Recommended for you

Microsoft beefs up security protection in Windows 10

20 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

US official: Auto safety agency under review

Oct 24, 2014

Transportation officials are reviewing the "safety culture" of the U.S. agency that oversees auto recalls, a senior Obama administration official said Friday. The National Highway Traffic Safety Administration has been criticized ...

Out-of-patience investors sell off Amazon

Oct 24, 2014

Amazon has long acted like an ideal customer on its own website: a freewheeling big spender with no worries about balancing a checkbook. Investors confident in founder and CEO Jeff Bezos' invest-and-expand ... domain sold for big payout

Oct 24, 2014

The owners of the website have scored a big payday with the outbreak of the epidemic, selling the domain for more than $200,000 in cash and stock.

Hacker gets prison for cyberattack stealing $9.4M

Oct 24, 2014

An Estonian man who pleaded guilty to orchestrating a 2008 cyberattack on a credit card processing company that enabled hackers to steal $9.4 million has been sentenced to 11 years in prison by a federal judge in Atlanta.

Magic Leap moves beyond older lines of VR

Oct 24, 2014

Two messages from Magic Leap: Most of us know that a world with dragons and unicorns, elves and fairies is just a better world. The other message: Technology can be mindboggingly awesome. When the two ...

User comments : 0