Probing Question: Are there upper and lower limits to temperature?

Jun 07, 2007 By Steve Miller
Probing Question: Are there upper and lower limits to temperature?
Three images showing formation of a Bose-Einstein condensate of rubidium atoms. Courtesy NIST

Most people have heard absolute zero described as the lowest possible temperature, but what does that mean? Is it really the coldest cold, or just the lowest temperature that we can measure? Is there a corresponding highest temperature? According to Moses Chan, Evan Pugh professor of physics at Penn State, answering these questions requires understanding the meaning of temperature.

"Temperature is a measure of the degree of 'disorder' or 'messiness' of a system," said Chan. "When a system is cooled down to absolute zero, then that system is perfectly ordered and all its constituents -- molecules and atoms -- are in their proper place. That is the lowest possible temperature." Absolute zero, or 0 K (kelvins) corresponds to -273.16 C, or -459.688 F.

Before quantum mechanics was developed as a model to explain the behavior of atomic and subatomic particles, scientists thought that all atoms would stop moving at absolute zero. However, even at this temperature, atoms and molecules retain what is known as zero-point energy, the lowest possible energy a system can have. As Chan explained it, the energy in the vacuum of empty space is considered a form of zero-point energy. Also described as the "ground" or "stationary" state, absolute zero is considered a stable state from which no energy can be removed.

"At low temperatures," Chan continued, "quantum mechanical effects dominate the properties of all matter." In some materials, the effect is truly spectacular. At sufficiently low temperatures, for instance, some types of matter become superconducting, carrying electric current with absolutely no resistance. Practical applications of this phenomena include high magnetic field MRI machines and very efficient electric motors and transformers.

Another vivid example of quantum effects can be found in liquid helium. When liquid helium becomes a superfluid, at temperatures below 2.176K, Chan noted, it can flow without friction. The lack of friction means the superfluid has no viscosity. If a droplet is caused to rotate inside a container, it can continue to rotate forever as if it were in a vacuum. To Chan, these are examples of macroscopic quantum phenomena -- quantum mechanics operating on a macroscopic scale.

Back in the 1920s, physicists Satyendra Bose and Albert Einstein predicted that at very low temperatures particles such as atoms will bunch together at exactly the same lowest energy quantum state. This state of matter is known as a Bose-Einstein Condensate (BEC). The collection of particles acts like a single giant atom. This phenomenon, Chan noted, was finally observed in the laboratory in 1995 by cooling rubidium atoms in the vapor phase down to a temperature of 50 nanokelvins (billionths of a kelvin) above absolute zero. The physicists who observed it, Carl Weiman and Eric Cornell, were awarded a Nobel prize for their work.

Chan's own research at very low temperatures yielded another important breakthrough in 2004. "My former student, Eunseong Kim, found that solid helium also exhibits superfluid-like properties below 0.2K," he explained. "Finding this supersolid phase indicates that all three states of matter -- vapor, liquid and solid -- can undergo BEC." Supersolid phenomena have sparked the interest of low-temperature and theoretical physicists worldwide. Chan and his current students -- Tony Clark, Xi Lin and Josh West -- are continuing the effort to understand this fascinating discovery.

So, is there a high temperature analog to absolute zero? When a material becomes very hot, its particles have lots of thermal energy, Chan said. Solids melt and liquids vaporize because their thermal energy exceeds the forces that bind atoms or molecules together. At even higher temperature, atoms dissociate into electrons and ion plasma, yet another state of matter. As more energy is injected into a system, its temperature continues to rise.

"In the sense that there is a limit to the total energy that exists in the universe, there is a highest possible temperature," said Chan. Cosmologists postulate that at around 10-43 seconds, an unimaginably tiny fraction of an instant after the Big Bang (If you were to take a trip to the farthest galaxy from Earth, 10-43 would represent the first billionth of a millimeter you traveled), the temperature of the newborn universe was 1032 K. Even the center of today's Sun, at 15,000,000 C, is frigid by comparison.

It is clear that we can never harness all the energy in the universe, so the highest possible temperature is not attainable. Can we ever experience the other end of the scale -- absolute zero? "No, we can get very close, but never to absolute zero," said Chan. "Some labs, including David Weiss's here at Penn State, can cool vapor samples to within a few nanokelvins, or billionths of a degree. But to bring something to perfect order, you have to get rid of the disorder or messiness. As the system gets closer to absolute zero, it becomes progressively harder and harder to remove that disorder."

Source: Research Penn State

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Probing Question: Are we running out of helium?

Apr 26, 2013

Party planners, take note: the atmosphere may become a little deflated at gala events in the future. Some scientists are sounding the alarm about the wastefulness of using helium—a rare, non-renewable gas—to fill party ...

Laser light used to cool object to quantum ground state

Oct 05, 2011

For the first time, researchers at the California Institute of Technology (Caltech), in collaboration with a team from the University of Vienna, have managed to cool a miniature mechanical object to its lowest ...

Electric Switches Hold Promise for Data Storage

May 22, 2009

( -- Multiferroics are materials in which unique combinations of electric and magnetic properties can simultaneously coexist. They are potential cornerstones in future magnetic data storage and ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.