The wilds of the local group

March 23, 2016
This image, captured by ESO's OmegaCAM on the VLT Survey Telescope, shows a lonely galaxy known as Wolf-Lundmark-Melotte, or WLM for short. Although considered part of our Local Group of dozens of galaxies, WLM stands alone at the group's outer edges as one of its most remote members. In fact, the galaxy is so small and secluded that it may never have interacted with any other Local Group galaxy -- or perhaps even any other galaxy in the history of the Universe. Credit: ESO

Rather like an uncontacted tribe living deep in the Amazon rainforest or on an island in Oceania, WLM offers a rare insight into the primordial nature of galaxies that have been little disturbed by their environment.

WLM was discovered in 1909 by German astronomer Max Wolf, and identified as a galaxy some fifteen years later by astronomers Knut Lundmark and Philibert Jacques Melotte—explaining the galaxy's unusual moniker. The dim galaxy is located in the constellation of Cetus (The Sea Monster) about three million light-years away from the Milky Way, which is one of the three dominant spiral in the Local Group.

WLM is quite small and lacks structure, hence its classification as a dwarf irregular galaxy. WLM spans about 8000 light-years at its greatest extent, a measurement that includes a halo of extremely old stars discovered in 1996.

Astronomers think that comparatively small primeval galaxies gravitationally interacted with each other and in many cases merged, building up into larger composite galaxies. Over billions of years, this merging process assembled the large spiral and that now appear to be common in the modern Universe. Galaxies congregating in this manner is similar to the way in which human populations have shifted over thousands of years and intermixed into larger settlements, eventually giving rise to today's megacities.

WLM has instead developed on its own, away from the influence of other galaxies and their stellar populations. Accordingly, like a hidden human population with limited contact with outsiders, WLM represents a relatively unperturbed "state of nature", where any changes occurring over its lifetime have taken place largely independent of activity elsewhere.

This small galaxy features an extended halo of very dim red stars, which stretches out into the inky blackness of the surrounding space. This reddish hue is indicative of advanced stellar age. It is likely that the halo dates back to the original formation of the galaxy itself, helpfully offering clues about the mechanisms that spawned the very first galaxies.

The stars at the centre of WLM, meanwhile, appear younger and bluer in colour. In this image, pinkish clouds highlight areas where the intense light from young stars has ionised ambient hydrogen gas, making it glow in a characteristic shade of red.

This detailed image was captured by the OmegaCAM wide-field imager, a huge camera mounted on ESO's VLT Survey Telescope (VST) in Chile—a 2.6-metre telescope exclusively designed to survey the night sky in visible light. OmegaCAM's 32 CCD detectors create 256-megapixel images, offering a very detailed wide-field view of the cosmos.

Explore further: Astronomers discover how lowly dwarf galaxy becomes star-forming powerhouse

Related Stories

A shy galactic neighbor

September 16, 2015

The Sculptor Dwarf Galaxy, pictured in this new image from the Wide Field Imager camera, installed on the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory, is a close neighbour of our galaxy, the Milky Way. Despite ...

Image: Hubble views two galaxies merging

December 31, 2015

This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules.

Hubble views a young elliptical galaxy

November 23, 2015

At the center of this amazing Hubble image is the elliptical galaxy NGC 3610. Surrounding the galaxy are a wealth of other galaxies of all shapes. There are spiral galaxies, galaxies with a bar in their central regions, distorted ...

Hubble sees a legion of galaxies

March 11, 2016

Peering deep into the early universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colorful galaxies swimming in the inky blackness of space. A few foreground stars ...

Recommended for you

Swiss firm acquires Mars One private project

December 2, 2016

A British-Dutch project aiming to send an unmanned mission to Mars by 2018 announced Friday that the shareholders of a Swiss financial services company have agreed a takeover bid.

Bethlehem star may not be a star after all

December 2, 2016

It is the nature of astronomers and astrophysicists to look up at the stars with wonder, searching for answers to the still-unsolved mysteries of the universe. The Star of Bethlehem, and its origin, has been one of those ...

Tangled threads weave through cosmic oddity

December 1, 2016

New observations from the NASA/ESA Hubble Space Telescope have revealed the intricate structure of the galaxy NGC 4696 in greater detail than ever before. The elliptical galaxy is a beautiful cosmic oddity with a bright core ...

Could there be life in Pluto's ocean?

December 1, 2016

Pluto is thought to possess a subsurface ocean, which is not so much a sign of water as it is a tremendous clue that other dwarf planets in deep space also may contain similarly exotic oceans, naturally leading to the question ...

Embryonic cluster galaxy immersed in giant cloud of cold gas

December 1, 2016

Astronomers studying a cluster of still-forming protogalaxies seen as they were more than 10 billion years ago have found that a giant galaxy in the center of the cluster is forming from a surprisingly-dense soup of molecular ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Bigbangcon
1.8 / 5 (5) Mar 23, 2016
This is typical broken-record narrative of official Big Bang cosmology. How can lost amazon tribe still exist without breeding new members? Where does "younger blue stars" in WLM galaxy and the "ionized ambient hydrogen gas" in it come from; without new hydrogen gas forming (from the virtual particles of the quantum vacuum) specially at the core of the galaxy, according to Arp-Malek hypothesis? Ambartsumian, Arp and the Breeding Galaxies: http://redshift.v...2MAL.pdf
EnsignFlandry
5 / 5 (1) Mar 23, 2016
Its not new hydrogen.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.