Engineers build electronic component that manages plasma in upgraded fusion machine

March 9, 2016
PPPL scientists Robert Mozulay and Weiguo Que in front of a new digital firing generator

PPPL engineers design and build state-of-the-art controller for AC to DC converter that manages plasma in upgraded fusion machine

The that powers fusion experiments requires superb control. Without it, the magnetic coils the current drives cannot contain and shape the plasma that fuels experiments in doughnut-shaped tokamaks correctly.

Now, engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have developed an updated version of a key electronic component that helps regulate the current that powers the coils in PPPL's recently completed National Spherical Torus Experiment-Upgrade (NSTX-U). The device, known as a digital firing generator, replaces an analog device in the previous machine that was less accurate and harder to maintain.

This upgrade will bring NSTX-U in line with other tokamaks around the world that employ the same kind of device. The engineers — Robert Mozulay, Weiguo Que, and Charles Neumeyer — presented their results at the 26th Symposium on Fusion Engineering in June 2015. This work was supported by the DOE Office of Science (Office of Fusion Energy Sciences).

"The digital firing generator is very important for ensuring that NSTX-U operates effectively and reliably," Neumeyer said. “These new generators extend the life of the power supplies that form the backbone of PPPL's electrical power system, and provide the precise control necessary to drive currents in the NSTX-U magnet coil up to 140,000 amps — higher than any previous experiment at PPPL."

The ability to better manage the electric current flowing into NSTX-U, the world's most advanced spherical tokamak, will provide new insights into how to control plasma, the soup of electrons and charged atomic nuclei that swirl within fusion facilities. With better control, scientists will be able to perform experiments on NSTX-U to advance the design of a working fusion reactor.

The new generator links the computer that controls NSTX-U and a device called a "thyristor rectifier" that adjusts the voltage, and thus the current, for NSTX-U experiments. Through a computer command sent via fiber optic cables, the digital firing generator causes the AC (alternating current) that flows into PPPL to convert to DC (direct current) and deliver the amount requested for an experiment. The team also built the fiber optic links that make the conversion possible.

"A single thyristor rectifier can generate up to 2,000 volts of DC current at 24,000 amps, for about three seconds," Mozulay said. "That amount of voltage corresponds to 48 megawatts of power, which, during the three-second pulse, could power approximately 8,000 average-sized New Jersey homes."

NSTX-U has 32 pairs of thyristor rectifiers, each controlled by its own digital firing generator. These rectifiers help to double the heating power and magnetic field strength that the upgrade has made possible. "All of the firing generators were designed, built, and tested here at PPPL," Mozulay said.

Other advantages over their analog predecessors include a greater ability to coordinate the production of electric current and to shut down when sensing that a rapid change in current might damage components. This synchronized shut-off process is like applying the brakes in a car, Mozulay said.

Engineers will also be able to adjust the digital firing generators much more easily than their analog predecessors. "Making changes in the future will mean making changes to the programming, not electronics," Mozulay said. "A new program can be downloaded into the digital signal processors within the firing generators in minutes, thereby allowing fast, accurate updates."

Explore further: NSTX project will produce world's most powerful spherical torus

Related Stories

Identifying new sources of turbulence in spherical tokamaks

November 25, 2015

For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the plasma that flows in facilities called tokamaks can cause heat to leak from ...

Graduate students install diagnostic on NSTX-U

December 22, 2015

A system of antennas similar to those that astrophysicists use to study radio emissions from stars and galaxies will help shed light on fusion experiments at the U.S. Department of Energy's Princeton Plasma Physics Laboratory ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.