Discovery of the specific properties of graphite-based carbon materials

February 4, 2016
Prof. Junji Nakamura (front), Dr. Donghui Guo (left), Assoc. Prof. Takehiro Kondo (right)

Research collaborators have shown from detailed measurements that in atomically flat areas of a nitrogen-doped graphite surface in the absence of external magnetic fields, Landau levels manifest corresponding to super strong magnetic fields of approximately 100 tesla across bilayer graphene. 

There has been some debate thus far that the source of Landau levels generated under non-magnetic fields has been pseudo-magnetic fields induced by asymmetries, but in this study the researchers observed Landau levels on atomically flat surfaces without asymmetries, showing for the first time the existence of Landau levels generated by sources other than asymmetries. These results further endorse the "domain model" (the mechanism for Landau level generation under a non-magnetic field) that this same research team has advocated for in the past, and newly reveals the unique properties of graphite-based carbon materials such as graphene, which could be used as new materials in electronic devices or for catalysis.

Graphite-based carbon materials such as graphene exhibit powerful electrical conductivity and excellent strength in small quantities, so there is hope that they may contribute to next-generation materials in a variety of fields. The discovery of new physical properties of in this study could lead to new applications in environmental materials like electronic that make use of electronic state controls such as band gap controls, catalysts or batteries.

Explore further: Graphene's multi-colored butterflies

More information: Takahiro Kondo et al. Observation of Landau levels on nitrogen-doped flat graphite surfaces without external magnetic fields, Scientific Reports (2015). DOI: 10.1038/srep16412

Related Stories

Graphene's multi-colored butterflies

June 1, 2014

Combining black and white graphene can change the electronic properties of the one-atom thick materials, University of Manchester researchers have found.

Researchers make magnetic graphene

January 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, ...

Nano-hybrid materials create magnetic effect

January 13, 2016

Developing novel materials from the atoms up goes faster when some of the trial and error is eliminated. A new Rice University and Montreal Polytechnic study aims to do that for graphene and boron nitride hybrids.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.