A step towards quantum electronics

December 17, 2015
Artist's view of the quantum point contact between two cold atom clouds. Credit: © Dominik Husmann ETH Zurich

Work of physicists at the University of Geneva (UNIGE), Switzerland, and the Swiss Federal Institute of Technology in Zurich (ETH Zurich), in which they connected two materials with unusual quantum-mechanical properties through a quantum constriction, could open up a novel path towards both a deeper understanding of physics and future electronic devices. Their results have just been published in the journal Science.

The researchers work with that are trapped in laser beams and thus isolated from any external disturbance. Lasers are also used to cool the atoms to temperatures lower than those found anywhere else in the entire Universe. These 'ultracold' temperatures then enable creating clean materials that possess intriguing quantum-mechanical properties, such as unusual superconductivity. Thierry Giamarchi, professor at the UNIGE and responsible for the theoretical part of the study, explains: "In a cold-atom superconductor, the particles interact very strongly, whereas the interaction is usually very weak. This brings out strong-interaction effects through cooling could be compared to freezing water: the basic system is the same, but the result after cooling is very different."

The experimental team in Zurich, led by Tilman Esslinger and Jean-Philippe Brantut, has now overcome the challenges to efficiently transport between two quantum superconductors with strong interactions through a single quantum point, a so-called quantum point contact. "With this new quantum connection, we can now reveal new effects in these superconducting quantum systems. It is a fundamental breakthrough in the way we can use quantum physics with ", says Giamarchi, from UNIGE's Faculty of Science.

A collaboration serving innovation

In general, it is difficult to produce a clean junction between quantum materials. Thanks to the collaboration between the teams in Geneva and Zurich, an important step has now been taken towards developing efficient junctions. For their ultracold atoms, the researchers produced junctions with a transparency close to 100 %. This advance is a crucial step towards understanding quantum transport in ultracold atoms and will enable fundamental studies of superconductors and other quantum materials. But interconnecting quantum materials such as superconductors might bring also new possibilities for more efficient information processing, beyond what is possible with techniques currently available for connecting, in computers and electronic devices, active elements such as transistors to form electronic circuits.

Now that junctions between with strong interactions can be produced, scientists might eventually create novel materials that can be used in everyday applications. The unconventional approach developed in Geneva and Zurich therefore establishes the first basis for new technologies and opens up a new research direction that might lead to creating ultrafast and robust electronic networks—a dream that many physicists share.

Explore further: A little light interaction leaves quantum physicists beaming

More information: "Connecting strongly correlated superfluids by a quantum point contact" DOI: 10.1126/science.aac9584

Related Stories

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Cooling with the coldest matter in the world

November 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree above absolute ...

Rubidium atoms used as a refrigerant for ytterbium atoms

November 12, 2015

For many years rubidium has been a workhorse in the investigation of ultracold atoms.  Now JQI scientists are using Rb to cool another species, ytterbium, an element prized for its possible use in advanced optical clocks ...

It's a beauty: JILA's quantum crystal is now more valuable

November 5, 2015

Physicists at JILA have made their "quantum crystal" of ultracold molecules more valuable than ever by packing about five times more molecules into it. The denser crystal will help scientists unlock the secrets of magnets ...

Recommended for you

Researchers discover new rules for quasicrystals

October 25, 2016

Crystals are defined by their repeating, symmetrical patterns and long-range order. Unlike amorphous materials, in which atoms are randomly packed together, the atoms in a crystal are arranged in a predictable way. Quasicrystals ...

Making silicon-germanium core fibers a reality

October 25, 2016

Glass fibres do everything from connecting us to the internet to enabling keyhole surgery by delivering light through medical devices such as endoscopes. But as versatile as today's fiber optics are, scientists around the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.