Cosmic forecast: Dark clouds will give way to sunshine

Sep 03, 2014
The Wide Field Imager (WFI) on the MPG/ESO 2.2-meter telescope at the La Silla Observatory in Chile captured this view of dark cloud Lupus 4 blotting out background stars. Lupus 4 is a dense pocket of gas and dust where new stars are expected to form. The cloud is located about 400 light-years away from Earth, on the border between the constellations of Lupus (The Wolf) and Norma (The Carpenter's Square). Credit: ESO

Lupus 4, a spider-shaped blob of gas and dust, blots out background stars like a dark cloud on a moonless night in this intriguing new image. Although gloomy for now, dense pockets of material within clouds such as Lupus 4 are where new stars form and where they will later burst into radiant life. The Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile captured this new picture.

Lupus 4 is located about 400 light-years away from Earth, straddling the constellations of Lupus (The Wolf) and Norma (The Carpenter's Square). The cloud is one of several affiliated dark clouds found in a loose star cluster called the Scorpius–Centaurus OB association. An OB association is a relatively young, yet widely dispersed grouping of stars. The stars likely had a common origin in a gigantic cloud of material.

Because the association, and its Lupus clouds, form the closest such grouping to the Sun, they are a prime target for studying how stars grow up together before going their separate ways. The Sun, along with most stars in our galaxy, is thought to have started out in a similar environment.

American astronomer Edward Emerson Barnard is credited with the earliest descriptions of the Lupus dark clouds in the astronomical literature, back in 1927. Lupus 3, neighbour to Lupus 4, is the best studied, thanks to the presence of at least 40 fledgling stars formed over the last three million years, and which are on the cusp of igniting their fusion furnaces. The main energy source in these adolescent stars, known as T Tauri stars, is the heat generated by their gravitational contraction. That is in contrast to the fusion of hydrogen and other elements which powers mature stars such as the Sun.

Observations of the cold darkness of Lupus 4 have turned up only a few T Tauri stars. Yet promisingly for Lupus 4 in terms of future star formation is a dense, starless core of material in the cloud. Given a few million years, that core should develop into T Tauri stars. Comparing Lupus 3 and Lupus 4 in this way suggests that the former is older than the latter, because its contents have had more time to develop into stars.

How many stars might eventually start to shine within Lupus 4? It is hard to say, as mass estimates for Lupus 4 vary. Two studies agree on a figure of around 250 times the mass of the Sun, though another, using a different method, arrives at a figure of around 1600 solar masses. Either way, the cloud contains ample material to give rise to plenty of bright new . Rather as earthly clouds make way for sunshine, so, too, shall this cosmic dark cloud eventually dissipate and give way to brilliant starlight.

Explore further: Image: Hubble looks at light and dark in the universe

add to favorites email to friend print save as pdf

Related Stories

Light from the darkness

Jan 16, 2013

(Phys.org)—An evocative new image from ESO shows a dark cloud where new stars are forming, along with a cluster of brilliant stars that have already emerged from their dusty stellar nursery. The new picture ...

'A drop of ink on the luminous sky'

Feb 13, 2013

This part of the constellation of Sagittarius (The Archer) is one of the richest star fields in the whole sky—the Large Sagittarius Star Cloud. The huge number of stars that light up this region dramatically ...

Deep astrophoto of LDN 673

Aug 05, 2014

What a stunning view of this dark region of space! This image, by astrophotographer Callum Hayton shows LDN 673, a molecular cloud complex that lies in the constellation Aquila. This region is massive—around ...

A spectacular landscape of star formation

Aug 20, 2014

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Recommended for you

Image: A Hubble sweep of the dust filaments of NGC 4217

18 hours ago

In this image the NASA/ESA Hubble Space Telescope takes a close look at the spiral galaxy NGC 4217, located 60 million light-years away from Earth. The galaxy is seen almost perfectly edge on and is a perfect ...

VLT image: The mouth of the beast

23 hours ago

Like the gaping mouth of a gigantic celestial creature, the cometary globule CG4 glows menacingly in this new image from ESO's Very Large Telescope. Although it appears to be big and bright in this picture, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.