Violent solar system history uncovered by WA meteorite

Aug 08, 2014 by Megan Meates
Meteorite
Credit: NASA

Curtin University planetary scientists have shed some light on the bombardment history of our solar system by studying a unique volcanic meteorite recovered in Western Australia.

Captured on camera seven years ago falling on the WA side of the Nullarbor Plain, the Bunburra Rockhole Meterorite has unique characteristics that suggest it came from a large that has never before been identified.

Associate Professor Fred Jourdan, along with colleagues Professor Phil Bland and Dr Gretchen Benedix from Curtin's Department of Applied Geology, believe the meteorite is evidence that a series of collisions of asteroids occurred more than 3.4 billion years ago.

"This meteorite is definitely one-of-a-kind," Dr Jourdan said.

"Nearly all meteorites we locate come from Vesta, the second largest asteroid in the . But after studying the meteorite's composition and orbit, it appears it derived from a large, unidentified asteroid that was split apart during the collisions."

The research team dated the meteorite with the argon-argon technique, a well-known method for dating impact crater events, to offer a glimpse of the asteroid's impact history.

They obtained three series of ages indicating that the meteorite recorded three impact events between 3.6 billion and 3.4 billion years ago.

"These ages are pretty old by terrestrial standards, but quite young for a meteorite since most are dated at 4.57 billion years old, when the solar system began," Dr Jourdan said.

"Interestingly, the results also showed that not a single impact occurred on this after 3.4 billion years ago until it fell to Earth in 2007.

"The same impact history has also been observed from meteorites originating from Vesta with any impact activity stopping after 3.4 billion years ago.

"Obtaining similar information from two large, yet distinct asteroids is an exciting discovery as it confirms some of the bombardment history of our solar system."

Dr Jourdan said the reason for impacts stopping after 3.4 billion years ago could have been from the asteroids being too small in size to be a target for collisions, or protected by regolith, a thick blanket of cushiony powder usually found at the surface of asteroids.

Explore further: Nullarbor meteorite likely fragment of unknown asteroid

More information: The paper's abstract, 40Ar/39Ar impact ages and time-temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite was recently published in Geochimica and Cosmochimica Acta and is available at: www.sciencedirect.com/science/… ii/S001670371400386X

add to favorites email to friend print save as pdf

Related Stories

Impact craters may have been cradles of life

Feb 26, 2013

(Phys.org)—Even comparatively small meteorite impact craters may have played a key role in the origin and evolution of early life on Earth, according to a researcher at The University of Western Australia.

Recommended for you

SDO captures images of two mid-level flares

3 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

10 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

13 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

13 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

14 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.