Toothpaste fluorine formed in stars

Aug 21, 2014
The Sun by the Atmospheric Imaging Assembly of NASA's Solar Dynamics Observatory. Credit: NASA

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, together with colleagues from Ireland and the USA.

Fluorine can be found in everyday products such as toothpaste and chewing gum. However, the origins of the chemical element have been somewhat of a mystery. There have been three main theories about where it was created. The findings now presented support the theory that fluorine is formed in similar to the but heavier, towards the end of their existence. The sun and the planets in our solar system have then been formed out of material from these .

"So, the fluorine in our toothpaste originates from the sun's dead ancestors", said Nils Ryde, a reader in astronomy at Lund University.

With doctoral student Henrik Jönsson and colleagues from Ireland and the US, he has studied stars formed at different points in the history of the universe to see if the amount of fluorine they contain agrees with the predictions of the theory.

By analysing the light emitted by a star, it is possible to calculate how much of different elements it contains. Light of a certain wavelength indicates a certain element. In the present study, the researchers used a telescope on Hawaii and a new type of instrument that is sensitive to light with a wavelength in the middle of the infrared spectrum. It is in this area that the signal is found in this case.

"Constructing instruments that can measure infrared light with high resolution is very complicated and they have only recently become available", said Nils Ryde.

Different chemical elements are formed at high pressure and temperature inside a star. Fluorine is formed towards the end of the star's life, when it has expanded to become what is known as a red giant. The fluorine then moves to the outer parts of the star. After that, the star casts off the outer parts and forms a planetary nebula. The fluorine that is thrown out in this process mixes with the gas that surrounds the stars, known as the . New stars and planets are then formed from the interstellar medium. When the die, the interstellar medium is enriched once again.

The researchers are now also turning their attention to other types of stars. Among other things, they will try to find out whether fluorine could have been produced in the early universe, before the first red giants had formed. They will also use the same method to study environments in the universe that are different from the environment surrounding the sun, such as close to the at the centre of the Milky Way. There, the cycle of stars dying and new ones being born goes considerably faster than around the sun.

"By looking at the level of fluorine in the stars there, we can say whether the processes that form it are different", said Nils Ryde.

Explore further: Lives and deaths of sibling stars

add to favorites email to friend print save as pdf

Related Stories

Lives and deaths of sibling stars

Jul 23, 2014

This beautiful star cluster, NGC 3293, is found 8000 light-years from Earth in the constellation of Carina (The Keel). This cluster was first spotted by the French astronomer Nicolas-Louis de Lacaille in ...

Sun-like stars reveal their ages

Jul 10, 2014

(Phys.org) —Defining what makes a star "Sun-like" is as difficult as defining what makes a planet "Earth-like." A solar twin should have a temperature, mass, and spectral type similar to our Sun. We also ...

Recommended for you

Possible bright supernova lights up spiral galaxy M61

13 hours ago

I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible ...

Fifteen years of NASA's Chandra X-ray observatory

14 hours ago

This Chandra X-ray Observatory image of the Hydra A galaxy cluster was taken on Oct. 30, 1999, with the Advanced CCD Imaging Spectrometer (ACIS) in an observation that lasted about six hours.

Confirming a 3-D structural view of a quasar outflow

15 hours ago

A team of astronomers have observed a distant gravitationally-lensed quasar (i.e., an active galactic nucleus) with the Subaru Telescope and concluded that the data indeed present a 3-D view of the structure ...

Hubble sees 'ghost light' from dead galaxies

Oct 30, 2014

(Phys.org) —NASA's Hubble Space Telescope has picked up the faint, ghostly glow of stars ejected from ancient galaxies that were gravitationally ripped apart several billion years ago. The mayhem happened ...

When did galaxies settle down?

Oct 30, 2014

Astronomers have long sought to understand exactly how the universe evolved from its earliest history to the cosmos we see around us in the present day. In particular, the way that galaxies form and develop ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

wkingmilw
not rated yet Aug 21, 2014
Deleted
supamark23
5 / 5 (2) Aug 21, 2014
Don't we use fluoride in toothpaste? Fluorine is a different animal


Fluoride is just the anion of fluorine.
Toiea
5 / 5 (2) Aug 21, 2014
So, the fluorine in our toothpaste originates from the sun's dead ancestors
Which element doesn't? We are star scavengers.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.