Tall boulder rolls down martian hill, lands upright

Aug 14, 2014 by Guy Webster
A path resembling a dotted line from the upper left to middle right of this image is the track left by an irregularly shaped, oblong boulder as it tumbled down a slope on Mars before coming to rest in an upright attitude at the downhill end of the track. The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter recorded this view on July 3, 2014. The boulder's trail down the slope is about one-third of a mile (about 500 meters) long. The trail has an odd repeating pattern, suggesting the boulder could not roll straight due to its shape. Calculated from the length of the shadow cast by the rock and the known angle of sunlight during this afternoon exposure, the height of the boulder is about 20 feet (6 meters). Its width as seen from overhead is only about 11.5 feet (3.5 meters), so it indeed has an irregular shape. It came to rest with its long axis pointed up. Credit: NASA

(Phys.org) —A track about one-third of a mile (500 meters) long on Mars shows where an irregularly shaped boulder careened downhill to its current upright position, seen in a July 3, 2014, image from the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA's Mars Reconnaissance Orbiter.

The shadow cast by the rock in mid-afternoon sunlight reveals it is about 20 feet (6 meters) tall. In the downward-looking image, the boulder is only about 11.5 feet (3.5 meters) wide. It happened to come to rest with its long dimension vertical. The trail it left on the slope has a pattern that suggests the boulder couldn't roll smoothly or straight due to its shape.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate in Washington. HiRISE, one of six science instruments on the orbiter, is operated by the University of Arizona, Tucson. The instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colorado.

Explore further: NASA image: Active dune field on Mars

add to favorites email to friend print save as pdf

Related Stories

NASA image: Active dune field on Mars

May 05, 2014

Nili Patera is one of the most active dune fields on Mars. As such, it is continuously monitored with the HiRISE (High Resolution Imaging Science Experiment) camera, a science instrument aboard NASA's Mars ...

NASA Mars orbiter examines dramatic new crater

Feb 05, 2014

(Phys.org) —Space rocks hitting Mars excavate fresh craters at a pace of more than 200 per year, but few new Mars scars pack as much visual punch as one seen in a NASA image released today.

NASA image: Giant landform on Mars

Jun 06, 2014

(Phys.org) —Sandy landforms formed by the wind, or aeolian bedforms, are classified by the wavelength—or length—between crests. On Mars, we can observe four classes of bedforms (in order of increasing ...

Mars orbiter images rover and tracks in Gale Crater

Jan 09, 2014

(Phys.org) —NASA's Curiosity Mars rover and its recent tracks from driving in Gale Crater appear in an image taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance ...

Curiosity Mars Rover Gleams in View from Orbiter

Jul 25, 2013

An image from NASA's Mars Reconnaissance Orbiter released today shows NASA's Curiosity Mars rover and the wheel tracks from its landing site to the "Glenelg" area where the rover worked for the first half ...

Recommended for you

Internet moguls Musk, Bezos shake up US space race

Sep 20, 2014

The space race to end America's reliance on Russia escalated this week with a multibillion dollar NASA award for SpaceX's Elon Musk and an unexpected joint venture for Blue Origin's Jeff Bezos.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

antigoracle
1 / 5 (2) Aug 14, 2014
Oh no! The martians are attacking.
Shitead
not rated yet Aug 14, 2014
Look more closely at the photo. That rock did not "careen" down the hill; it moved very slowly, leaving the exact pattern for each movement. The only difference between the marks is that the top ones have been eroded by wind, while the bottom ones are fresh. And at the end of each rotation the rock stands precisely on end. That is truly strange!
NIS_0
not rated yet Aug 15, 2014
That's not a tumble, that's a hop. A real tumble would have the point of the print touch the point of the next. Looking like two arrows pointing at each other. Guess it's not what's said, it's what isn't...