Key adjustment enables parasite shape-shifting

Aug 04, 2014
T. brucei parasites in the trypomastigote stage (left) adopt a very different shape compared with the epimastigote-like cells induced by suppression of a key protein (right). Credit: Hayes et al., 2014

Crafty parasites frequently undergo dramatic shape changes during their life cycles that enable them to adapt to different living conditions and thrive. But these transformations might not be as difficult as they appear, according to a study in The Journal of Cell Biology.

African "sleeping sickness" is a disease caused by a species of parasite known as Trypanosoma brucei that is transmitted by the . The single-celled parasite has a kinetoplast, which houses the cell's mitochondrial DNA, and a protruding flagellum that is crucial for cell movement. T. brucei undergoes major changes in shape and form during its developmental cycle. In one phase, known as the trypomastigote stage, the kinetoplast is located posterior to the nucleus and almost all of the flagellum is connected to the cell. In the epimastigote stage, on the other hand, the kinetoplast is anterior to the nucleus, and only part of the flagellum is fastened to the cell. T. brucei's close relatives come in many different shapes, indicating that the parasites have also altered their morphology during evolution.

When researchers from the University of Oxford reduced the expression of a protein called ClpGM6 in T. brucei trypomastigotes, the switched to an epimastigote-like morphology. The kinetoplast was close to the nucleus or anterior to it, and a long section of the flagellum extended beyond the cell. The parasites weren't identical to epimastigotes—they lacked a distinctive surface protein found at this life stage—but they were able to survive and reproduce for more than 40 generations.

This video is not supported by your browser at this time.
Researchers show that suppressing expression of a key protein causes major changes in the shape of T. brucei (shown here), the parasite that causes African sleeping sickness. Credit: Hayes et al., 2014

ClpGM6 resides in the flagellar attachment zone and likely helps fasten the to the cell body. Loss of ClpGM6 shortened the flagellar attachment zone, which helps determine cell size and shape. The study suggests that dramatic morphological changes during the life cycle and during parasite evolution may result from adjustments in the levels of a few key proteins, rather than from wholesale changes in the parasite's protein or DNA content.

Explore further: Researchers discover new mechanism of DNA repair

More information: Hayes, P., et al. 2014. J. Cell Biol. doi:10.1083/jcb.201312067

Related Stories

New treatment for African sleeping sickness comes closer

Nov 06, 2013

Researchers at Umeå University have identified drugs targeting infections of the parasite Trypanosoma brucei and are thereby well on the way to find a cure against African sleeping sickness. This is the kernel of a thesis, ...

Parasite helps itself to sugar

Jul 08, 2013

Trypanosoma brucei, the parasite that causes sleeping sickness, is transmitted to mammals by the tsetse fly, and must adapt to the divergent metabolisms of its hosts. A new study shows how it copes with t ...

Sleeping sickness by stealth

Feb 05, 2013

(Medical Xpress)—Stealth is a well-known concept in military tactics. Almost since the invention of radar, the hunt began for counter-technologies to hide aircraft and missiles from detection – most successfully ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.