A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy

Aug 22, 2014
A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy
Credit: Azubel-fig

Nanometre-scale gold particles are intensively investigated for application as catalysts, sensors, drug delivery devices, biological contrast agents and components in photonics and molecular electronics. Gaining knowledge of their atomic-scale structures, fundamental for understanding physical and chemical properties, has been challenging. Now, researchers at Stanford University, USA, have demonstrated that high-resolution electron microscopy can be used to reveal a three-dimensional structure in which all gold atoms are observed. The results are in close agreement with a structure predicted at the University of Jyväskylä, Finland, on the basis of theoretical modelling and infrared spectroscopy (see Figure). The research was published in Science on 22 August 2014.

The revealed nanoparticle is 1.1 nm in diameter and contains 68 organised in a crystalline fashion at the centre of the particle. The result was supported by small-angle X-ray scattering done in Lawrence Berkeley National Laboratory, USA, and by mass spectrometry done at Hokkaido University, Japan.

Electron microscopy is similar in principle to conventional light microscopy, with the exception that the wavelength of the electron beam used for imaging is close to the spacing of atoms in solid matter, about a tenth of a nanometre, in contrast with the wavelength of visible light, which is hundreds of nanometres. A crucial aspect of the new work is the irradiation of the nanoparticle with very few electrons to avoid perturbing the structure of the nanoparticle. The success of this approach opens the way to the determination of many more nanoparticle structures and to both fundamental understanding and practical applications.

The researchers involved in the work are Maia Azubel, Ai Leen Koh, David Bushnell and Roger D. Kornberg from Stanford University, Sami Malola, Jaakko Koivisto, Mika Pettersson and Hannu Häkkinen from the University of Jyväskylä, Greg L. Hura from Lawrence Berkeley National Laboratory, and Tatsuya Tsukuda and Hironori Tsunoyama from Hokkaido University. The work at the University of Jyväskylä was supported by the Academy of Finland. The computational work in Hannu Häkkinen's group was done at the HLRS-GAUSS centre in Stuttgart as part of the PRACE project "Nano-gold at the bio-interface."

Explore further: Scientists unveil new technology to better understand small clusters of atoms

More information: M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen and R.D. Kornberg, "Electron microscopy of gold nanoparticles at atomic resolution", Science 345, 909 (2014). www.sciencemag.org/content/345/6199/909.abstract

add to favorites email to friend print save as pdf

Related Stories

Fingerprints of a gold cluster revealed

Feb 28, 2011

Nanometre-scale gold particles are currently intensively investigated for possible applications in catalysis, sensing, photonics, biolabelling, drug carriers and molecular electronics. The particles are prepared ...

Recommended for you

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Excitonic dark states shed light on TMDC atomic layers

Sep 11, 2014

(Phys.org) —A team of Berkeley Lab researchers believes it has uncovered the secret behind the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials, ...

User comments : 0