Corals provide clues for climate change research

Jul 16, 2014 by Katie Neith
Deep-ocean corals collected by Caltech researchers provide important information about past climates. Credit: Caltech

(Phys.org) —Just as growth rings can offer insight into climate changes occurring during the lifespan of a tree, corals have much to tell about changes in the ocean. At Caltech, climate scientists Jess F. Adkins and Nivedita Thiagarajan use manned submersibles, like Alvin operated by the Woods Hole Oceanographic Institution, to dive thousands of meters below the surface to collect these specimens—and to shed new light on the connection between variance in carbon dioxide (CO2) levels in the deep ocean and historical glacial cycles.

A paper describing the research appears in the July 3 issue of Nature.

It has long been known that ice sheets wax and wane as the concentration of CO2 decreases and increases in the atmosphere. Adkins and his team believe that the —which stores 60 times more inorganic sources of carbon than is found in the atmosphere—must play a vital role in this variance.

To investigate this, the researchers analyzed the calcium carbonate skeletons of corals collected from deep in the North Atlantic Ocean. The corals were built up from 11,000–18,000 years ago out of CO2 dissolved in the ocean.

"We used a new technique that has been developed at Caltech, called clumped isotope thermometry, to determine what the temperature of the ocean was in the location where the coral grew," says Thiagarajan, the Dreyfus Postdoctoral Scholar in Geochemistry at Caltech and lead author of the paper. "We also used radiocarbon dating and uranium-series dating to estimate the deep-ocean ventilation rate during this time period." 

The researchers found that the deep ocean started warming before the start of a rapid event about 14,600 years ago in which the last glacial period—or most recent time period when ice sheets covered a large portion of Earth—was in the final stages of transitioning to the current interglacial period.

"We found that a warm-water-under-cold-water scenario developed around 800 years before the largest signal of warming in the Greenland ice cores, called the 'Bølling–Allerød,'" explains Adkins. "CO2 had already been rising in the atmosphere by this time, but we see the deep-ocean reorganization brought on by the potential energy release to be the pivot point for the system to switch from a glacial state, where the deep ocean can hold onto CO2, and an interglacial state, where it lets out CO2."  

"Studying Earth's climate in the past helps us understand how different parts of the climate system interact with each other," says Thiagarajan. "Figuring out these underlying mechanisms will help us predict how will change in the future." 

Explore further: The last ice age

More information: "Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean." Thiagarajan, Nivedita and Subhas, Adam V. and Southon, John R. and Eiler, John M. and Adkins, Jess F. (2014) Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature, 511 (7507). pp. 75-78. ISSN 0028-0836. resolver.caltech.edu/CaltechAU… S:20140430-120517933

add to favorites email to friend print save as pdf

Related Stories

The last ice age

Jul 03, 2014

A team of scientists has discovered that a giant 'burp' of carbon dioxide (CO2) from the North Pacific Ocean helped trigger the end of last ice age, around 17,000 years ago.

Detecting the oceanic CO2 sink today and in the future

May 28, 2014

The ocean has steadily taken up excess anthropogenic CO2 from the atmosphere but a slow down is expected in various parts of the ocean. The current observational network needs to be improved to monitor these ...

Dwindling buffer effect?

Mar 28, 2013

(Phys.org) —The Southern Ocean could absorb relatively less carbon dioxide in future if the global temperatures continue to rise as a result of human activities, as climate researchers from ETH Zurich demonstrate ...

Recommended for you

Suomi NPP satellite spots birth of Tropical Cyclone Kate

Dec 24, 2014

The tropical low pressure area previously known as System 95S organized and strengthened into Tropical Cyclone Kate on Dec. 24 and the Cocos Keeling Islands are expected to feel its effects on Dec. 25 and ...

NASA looks at some severe holiday weather from space

Dec 24, 2014

Severe weather in the form of tornadoes is not something people expect on Christmas week but a storm system on Dec. 23 brought tornadoes to Mississippi, Georgia and Louisiana. As the storm moved, NASA's RapidScat ...

NASA satellite spots Christmas

Dec 24, 2014

If you're looking for Christmas NASA's Aqua satellite spotted it in the Southern Indian Ocean. It's a coral atoll (a ring-shaped reef, island, or chain of islands made up of coral) in the northern Line Islands ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.