"CanJam" joint among first to fly on NASA, Virgin Galactic flight

July 30, 2014 by Marcene Robinson
The "CanJam" manipulator allows a user to steer satellites using a wheel with three degrees of freedom — tilting forward and backward, swiveling left and right, and pivoting side to side.

Gyroscope-aided bikes and cars may one day rule the road. But before the technology reaches the ground, a University at Buffalo research team will test similar equipment in outer space.

The Canfield joint actuation manipulator – nicknamed "CanJam" by the researchers – was selected by NASA to join the first commercial research flight on Virgin Galactic's SpaceShipTwo.

The tennis-ball sized device was designed by Manoranjan Majji, lead researcher and assistant professor in the Department of Mechanical and Aerospace Engineering. "CanJam" can automatically control a satellite using a Canfield joint—a spherical joint that can point anywhere on a hemisphere – and an automated program that stabilizes the device when disturbed and a wheel.

The manipulator allows a user to steer satellites using a wheel with three degrees of freedom – tilting forward and backward, swiveling left and right and pivoting side to side. Unlike traditional joints, the device also contains three motors as a failsafe in the chance one motor fails.

Traditional technologies used by NASA and other agencies occasionally don't produce the necessary torque to rotate aircrafts, also known as singularities, which make it difficult to build attitude control systems. Due to its design, the "CanJam" system doesn't create singularities, simplifying attitude control, says Majji.

If the NASA test flight is successful, the Canfield joint actuation manipulator designed by Manoranjan Majji could be useful in directing the flight of satellites or helicopters by replacing the wheel with propellers. Credit: Douglas Levere

The UB project was chosen along with 11 other experiments through NASA's Flight Opportunities Program, which works with commercial companies, universities and government organizations to test innovative space technologies. NASA funded research and development of the designs.

"Projects like this enable us to build the next generation of agile space systems and aircraft," says Majji. "In addition to aerospace systems, this technology has spill-over effects into the automobile industry. The future generation of cars and bikes are going to have control moment gyroscopes, and we're at the core of fundamental research that enables that sort of technology."

Majji's CanJam design was inspired by use of the Canfield joint in space thrusters. In his device, gyroscopic forces generated when the joint shifts create reaction torques that cause inverted satellite movement.

In the NASA flight test, once the spacecraft reaches microgravity, the device will point to a designated direction and a linear actuator will repeatedly push the manipulator out of place, destabilizing it. The device will then automatically stabilize itself, correcting the pointing errors. Flight computers will record the accuracy of the manipulator after disturbances.

If successful, the manipulator could be useful for directing the flight of satellites or helicopters by replacing the wheel with propellers. Eventually, the technology will find its way onto cars and bikes, says Majji.

Research conducted through Majji's lab also focuses on designing aerospace vehicle sensors and actuators, and developing autopilot and tracking programs for .

Explore further: A better motor for the Mars Rover

Related Stories

A better motor for the Mars Rover

November 21, 2013

In the world of robotics, identifying actuators that are strong and compact is probably one of the most important open technological problems yet to be resolved. More often than not, the mechanical elements that translate ...

NASA Flight Opportunities Program launches science payloads

December 2, 2013

An enthusiastic group of suborbital space researchers arrived at Spaceport America in New Mexico in early November to prepare and load their experiments on an UP Aerospace rocket that would place their technologies in a space-like ...

DARPA's experimental space plane XS-1 starts development

July 16, 2014

The Defense Advanced Research Projects Agency (DARPA) is looking to develop a fully-reusable unmanned spaceplane, and they are now ready to start working their proposed Experimental Spaceplane (XS-1). The agency has put together ...

Recommended for you

Distant planet's interior chemistry may differ from our own

September 1, 2015

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Interstellar seeds could create oases of life

August 27, 2015

We only have one example of a planet with life: Earth. But within the next generation, it should become possible to detect signs of life on planets orbiting distant stars. If we find alien life, new questions will arise. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.