Microalgae capable of assimilating the NH3 resulting from the management of agrifood waste

May 29, 2014

The Basque Institute for Agricultural Research and Development, Neiker-Tecnalia, the public body that reports to the Sub-Ministry for Agriculture, Fisheries and Food Policy of the Government of the Basque Autonomous Community, has confirmed the capacity of Chlamydomonas acidophila microalgae to absorb ammoniacal nitrogen present in the effluent generated in the digestion of organic waste coming from the agri-food sector. These algae can grow in these liquids and assimilate the ammonium, which prevents this gas from being volatilised in the form of ammonia (NH3) and contaminating the atmosphere. Furthermore, the microalgae biomass obtained in this procedure can be used as a raw material for producing biogas or used as animal feed, compost or fertilizer besides being an extraordinary source of lutein, a powerful antioxidant used as a food supplement.

The of agri-food waste in oxygen-free conditions produces effluent that has a high content of ammoniacal nitrogen, specifically between 2 and 5 grams per litre. Significant quantities of this waste is produced on farms and , among other facilities. That is why it is essential to find suitable methods for managing it and for preventing the ammonia from being volatilised and ending up in aquifers and surface waters.

Chlamydomonas acidophila microalgae display characteristics suited to growing and reproducing in a medium that contains up to 50% of the liquid that comes from the decomposition of agri-food waste, as Neiker-Tecnalia researchers have been able to confirm. The main advantage in cultivating them lies in their capacity to develop in very acid mediums (pH 2-3) and to tolerate, to a high degree, the presence of heavy metals and high organic loads.

In addition to their environmental contribution owing to their capacity to assimilate ammoniacal nitrogen, they have a significant capacity to produce lutein, a powerful antioxidant that helps to delay cell and tissue deterioration and oxidation; lutein protects the organism from free radicals attack and is used in various therapeutic treatments. Optimum consumption of it leads to better vision, prevents cataract progression and also accumulates a large quantity of carotenoids –organic pigments– of commercial interest for the food industry.

Neiker-Tecnalia is currently developing various lines of research devoted to identifying and subsequently assessing microalgae strains that are of commercial and environmental interest. Among the projects being conducted features the quest for oil-rich microalgae that can be used to obtain biodiesel.

Source of new products and applications

Microalgae form a heterogeneous group of microorganisms distributed across all imaginable environments and which share the characteristic of being photosynthetic. These organisms perform an essential role in global ecology since they are responsible for fixing about 50% of the planet's carbon. Through photosynthesis they use solar energy to trap atmospheric carbon dioxide and turn it into organic carbon.

Due to their huge biodiversity, represent one of the most promising sources of new products and applications. Today, they are a source of a large variety of compounds and biomolecules with a high commercial value and applications as wide ranging as food, dietetics, fine chemicals, biomedicine, cosmetics and bioenergy, all of which are an indication of their biotechnological potential.

Explore further: Research reveals potential for producing liquid fuels using microalgae

More information: Research paper in the Bioresource Technology: www.sciencedirect.com/science/article/pii/S0960852413018026

Related Stories

Microalgae could be a profitable source of biodiesel

March 21, 2013

Researchers at the UAB's Institute of Environmental Science and Technology (ICTA-UAB) and the Institute of Marine Sciences (ICM-CSIC), have analysed the potential of different species of microalgae for producing biodiesel, ...

Recommended for you

Automating DNA origami opens door to many new uses

May 27, 2016

Researchers can build complex, nanometer-scale structures of almost any shape and form, using strands of DNA. But these particles must be designed by hand, in a complex and laborious process.

Study shows sharks have personalities

May 27, 2016

For the first time a study led by researchers at Macquarie University has observed the presence of individual personality differences in Port Jackson sharks.

Faster, more efficient CRISPR editing in mice

May 27, 2016

University of California, Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the ...

Hawk moths have a second nose for evaluating flowers

May 27, 2016

Flowers without scent produce fewer seeds, although they are visited as often by pollinators as are flowers that do emit a scent. Scientists from the Max Planck Institute for Chemical Ecology in Jena, Germany, made this surprising ...

How sunflowers track the sun

May 27, 2016

Plants tell time. Not the way we do – for example, it's 3.40pm, time to pick up the kids. But like animals, plants can sense that winter is coming and it's time to drop leaves.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.