Hydrologists find Mississippi River network's buffering system for nitrates is overwhelmed

May 11, 2014
The map shows the fractional amount of surface water that is likely to enter the hyporheic zone, where it can undergo filtration. Orange and red represent areas experiencing a lower fraction of water entering the hyporheic zone. Dark blue areas approach 100 percent likelihood water will enter the zone. Credit: Kiel and Cardenas, Jackson School of Geosciences, The University of Texas at Austin.

A new method of measuring the interaction of surface water and groundwater along the length of the Mississippi River network adds fresh evidence that the network's natural ability to chemically filter out nitrates is being overwhelmed.

The research by hydrogeologists at The University of Texas at Austin, which appears in the May 11 edition of the journal Nature Geoscience, shows for the first time that virtually every drop of water coursing through 311,000 miles (500,000 kilometers) of waterways in the Mississippi River network goes through a natural filtering process as it flows to the Gulf of Mexico.

The analysis found that 99.6 percent of the water in the network passes through filtering sediment along the banks of creeks, streams and rivers.

Such a high level of chemical filtration might sound positive, but the unfortunate implication is that the river's natural filtration systems for nitrates appear to be operating at or very close to full capacity. While further research is needed, this would make it unlikely that natural systems can accommodate the high levels of nitrates that have made their way from farmland and other sources into the river network's waterways.

As a result of its filtration systems being overwhelmed, the river system operates less as a buffer and more as a conveyor belt, transporting nitrates to the Gulf of Mexico. The amount of nitrates flowing into the gulf from the Mississippi has already created the world's second biggest dead zone, an oxygen-depleted area where fish and other aquatic life can't survive.

The research, conducted by Bayani Cardenas, associate professor of hydrogeology, and Brian Kiel, a Ph.D. candidate in geology at the university's Jackson School of Geosciences, provides valuable information to those who manage water quality efforts, including the tracking of nitrogen fertilizers used to grow crops in the Midwest, in the Mississippi River network.

"There's been a lot of work to understand surface-groundwater exchange," said Aaron Packman, a professor in the Department of Civil and Environmental Engineering at Northwestern University. "This is the first work putting together a physics-based estimate on the scale of one of these big rivers, looking at the net effect of nitrate removal in big river systems."

The Mississippi River network includes the Ohio River watershed on the east and the Missouri River watershed in the west as well as the Mississippi watershed in the middle.

Using detailed, ground-level data from the United States Geological Survey (USGS) and Environmental Protection Agency, Cardenas and Kiel analyzed the waterways for sinuosity (how much they bend and curve); the texture of the materials along the waterways; the time spent in the sediment (known as the hyporheic zone); and the rate at which the water flows through the sediment.

The sediment operates as a chemical filter in that microbes in the sand, gravel and mud gobble up compounds such as oxygen and nitrates from the water before the water discharges back into the stream. The more time the water spends in sediment, the more some of these compounds are transformed to potentially more environmentally benign forms.

One compound, nitrate, is a major component of inorganic fertilizers that has helped make the area encompassed by the Mississippi River network the biggest producer of corn, soybeans, wheat, cattle and hogs, in the United States.

But too much nitrogen robs water of oxygen, resulting in algal blooms and dead zones.

While the biggest source of nitrates in the Mississippi River network are industrial fertilizers, also come from animal manure, urban areas, wastewater treatment and other sources, according to USGS.

Cardenas and Kiel found that despite an image of water flowing freely downstream, nearly each drop gets caught up within the bank at one time or another. But not much of the water—only 24 percent—lingers long enough for nitrate to be chemically extracted.

The "residence times" when water entered the hyporheic zones ranged from less than an hour in the river system's headwaters to more than a month in larger, meandering channels. A previous, unrelated study of hyporheic zones found that a residence time of about seven hours is required to extract nitrogen from the .

Cardenas said the research provides a large-scale, holistic view of the river network's natural buffering mechanism and how it is failing to operate effectively.

"Clearly for all this nitrate to make it downstream tells us that this system is very overwhelmed," Cardenas said.

The new model, he added, can be a first step to enable a wider analysis of the river system.

When a river system gets totally overwhelmed, "You lose the chemical functions, the chemical buffering," said Cardenas. "I don't know whether we're there already, but we are one big step closer to the answer now."

Explore further: Sampling study suggests Mississippi River has ample sand to prevent delta land loss

More information: Lateral hyporheic exchange throughout the Mississippi River network, Nature Geoscience, DOI: 10.1038/ngeo2157

add to favorites email to friend print save as pdf

Related Stories

Forecast predicts biggest Gulf dead zone ever

Jun 15, 2011

Scientists predict this year's "dead zone" of low-oxygen water in the northern Gulf of Mexico will be the largest in history - about the size of Lake Erie - because of more runoff from the flooded Mississippi River valley.

Dead zones in Gulf caused, in part, by farm drainage

Nov 24, 2010

(PhysOrg.com) -- The tile drainage systems in upper Mississippi farmlands -- from southwest Minnesota to across Iowa, Illinois, Indiana and Ohio -- are the biggest contributors of nitrogen runoff into the ...

Recommended for you

The ocean's living carbon pumps

1 hour ago

When we talk about global carbon fixation – "pumping" carbon out of the atmosphere and fixing it into organic molecules by photosynthesis – proper measurement is key to understanding this process. By ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
3.7 / 5 (3) May 11, 2014
Worser and worser yet.

But the operation of freimarkets is in no way responsible for this, or any other other negative consequences of for-profit consumerism.

After all --they're just supplying a demand.

The poisonioning of our natural environment --aka, life support system-- is merely an "External Cost" of putting all those sweet $$$$ into our Oligarchs' pockets.

Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi! Benghazi!

shavera
5 / 5 (2) May 12, 2014
While I'm super liberal in many regards, this is an area with which I think I agree with some conservatives: There are distortions in the market that are driving bad decision making. Principally all the distortions that favor corn production over everything else. Big Agricultural presences that are designed around high fertilized fields of corn are producing some serious negative effects elsewhere. But it doesn't have to be this way. The demand for corn exists because we artificially deflate the costs to produce it, and inflate the costs it can be sold at.