A quantum logic gate between light and matter

Apr 10, 2014 by Olivia Meyer-Streng
A quantum logic gate between light and matter
Fig.: Central part of the experimental setup: A single atom is trapped in the narrow gap between two highly reflecting mirrors (light blue) that form an optical resonator. Reflection of single photons from the resonator implements a quantum logic operation between the atom and the photons. Credit: Andreas Reiserer, MPQ, Quantum Dynamics Division.

Scientists at Max Planck Institute of Quantum Optics, Garching, Germany, successfully process quantum information with a system comprising an optical photon and a trapped atom.

When it comes to recognizing complex patterns or to decoding encrypted messages, conventional computers reach their limits. A whole new quality in the communication and processing of data is expected from a technology that exploits the special properties of quantum particles such as superposition and entanglement. Scientists around the world pursue a variety of different concepts towards the development of such a quantum computer. Prof. Gerhard Rempe, Director at the MPQ and head of the Quantum Dynamics Division, follows the strategy of combining two rather dissimilar techniques: quantum communication using photons, and information processing using stationary . His team has now for the first time realized a quantum logic gate between a single photon and a single atom. The development of this hybrid device could be a milestone on the path to a scalable and universal quantum computer.

Any modern computer operates according to a mathematical principle that was developed by German polymath Gottfried Wilhelm Leibniz more than 300 years ago: information can be encoded in the binary system and processed via the application of logic operators. Logic gates are based on this principle. They deterministically generate output signals for any combination of input signals according to a so-called truth table. Nowadays, computers contain many millions of in the form of electronic circuits.

In the experiment described here, the binary states 0 and 1 are represented by the two spin orientations of an atom (upwards or downwards), and by two polarization states of an optical photon (left or right circular), respectively. In contrast to classical bits, these "quantum bits" can be in a coherent superposition of both states. In order to realize a , the atom is trapped inside a cavity which is made of two high-finesse mirrors. The properties of the cavity are chosen in such a way that atom and cavity form a strongly coupled system. The light quanta are prepared as faint laser pulses containing less than one photon on average.

In a former experiment it has been shown that – by a proper choice of parameters – the light quanta are always reflected. What matters is the fact that for certain combinations of atomic and photonic input states the photons are reflected at the first mirror. For other combinations, however, they first enter the cavity, subsequently leaving it on the same path. Thereby, they experience a phase shift of 180 degrees. "This conditional phase shift is the prerequisite for the implementation of a truth table assigning output signals to any combination of input bits in a deterministic way, similar to a classical logic gate.", Dr. Stephan Ritter explains.

"In our experiment we measure both the polarization of the reflected photons and the spin orientation of the atom after the gate operation. At present, we achieve an efficiency of about 70%. By further improving the mirror parameters this value could be significantly improved", Andreas Reiserer says.

These measurements demonstrate that the hybrid atom-photon system can act as a classical logic gate. However, the true advantage of a quantum gate compared to a classical one is its ability to generate entangled states from separable input states. In order to test this specific behaviour, the scientists chose a combination of input bits that – according to the rules of quantum mechanics – must lead to an entangled state of atom and photon after the gate operation. Also in this case the gate mechanism worked as expected.

By successively sending two laser pulses onto the system the physicists could even achieve entanglement between the atom and two photons. By clever manipulation of the atom in a second step it was disentangled, leaving a pair of two entangled photons. "These measurements demonstrate the versatility of the gate mechanism that even provides an interaction between two photons", Norbert Kalb says. "The mechanism should also allow generating entangled cluster states that consist of the atom and several photons."

The development of this hybrid quantum logic gate could be a big step towards a universal quantum computer. "Quantum communication, using flying photons, and data processing with atoms or ions have been regarded as separate research fields so far", Prof. Gerhard Rempe says. "In our experiment we merge both techniques. In particular, our quantum gate could be easily implemented in a network in which atoms serve as stationary nodes for the storage of information, whereas photons transmit the information between these nodes, even over large distances. In this way we hope to contribute to the realization of a scalable quantum computer."

Explore further: Scientists demonstrate switching effects caused by single photons

More information: Andreas Reiserer, Norbert Kalb, Gerhard Rempe, and Stephan Ritter. "A quantum gate between a flying optical photon and a single trapped atom." Nature, DOI: 10.1038/nature13177, 10 April 2014

Related story: New 'switch' could power quantum computing

add to favorites email to friend print save as pdf

Related Stories

Seeing a photon without absorbing it

Nov 14, 2013

Light is of fundamental importance. It allows us to see the world around us and record pictures of our environment. It enables communication over long distances through optical fibers. All current methods ...

New 'switch' could power quantum computing

Apr 09, 2014

Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at MIT and Harvard University have developed a new method for connecting particles—one that could help ...

Recommended for you

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

An Interview with Thomas Vidick on quantum code cracking

Dec 15, 2014

Quantum computers, looked to as the next generation of computing technology, are expected to one day vastly outperform conventional computers. Using the laws of quantum mechanics—the physics that governs ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Hui Zhang
not rated yet Apr 11, 2014
I think speed of quantum computer is determined by velocity of movement of quantum particle

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.