Magic and symmetry in mathematics

Mar 12, 2014 by Angela Herring
Associate professor of mathematics Ivan Loseu was named a Sloan 2014 Research Fellow for his contributions to the field of representation theory, a sophisticated branch of algebra. Photo by Mariah Tauger.

We live in a three-dimensional world. Despite the many benefits this presents, it also makes for a complicated math problem, according to Northeastern associate professor of mathematics Ivan Loseu. The best a path to a solution, he said, is reducing the number of variables we're dealing with.

Consider the Earth moving around the sun. Three variables are needed to describe the position of the Earth because the motion occurs in this three-dimensional space. Newton's laws in physics allow you to reduce the number of variables even further to two, since the Earth never leaves a certain plane. But, hey, one variable is even better than two. That's why physicists use the properties of to track the Earth's elliptical trajectory.

"The formula for gravity depends only on the distance between the sun and Earth," Loseu said. "You rotate the picture, but the physical law remains the same."

The reason this problem can be solved using only one variable, he said, can be described in one word: symmetry.

"A symmetry is any transformation that preserves your problem," Loseu explained. The symmetry people typically imagine involves reflecting an image over a single plane to reveal the exact same image—like looking in a mirror. But that's only one type of symmetry. There are plenty of others. For instance, describes the fact that rotating an object—say the Earth's orbital pattern—around an axis doesn't change its properties.

Loseu explained that symmetries allow for reducing the dimension of a system because they can be used to produce preserved quantities; in other words, properties that do not change no matter how much the system changes.

This idea of using symmetries to reduce the number of variables is the critical element in Loseu's research toolbox. He uses it not to solve problems in physics, but rather to solve problems in representation theory, a sophisticated branch of algebra. He was recently named a Sloan 2014 Research Fellow for his contributions to this field.

And just as numbers are used in algebra, so too are symmetries.

"Take two symmetrical transformations, apply them consequently, and the composition of the two is again a symmetry," Loseu explained.

The more symmetric a system, he continued, the easier the system is to solve. Therefore, identifying symmetries can help simplify a problem and transform it from an unsolvable one to a solvable one.

This idea serves as the foundation for what he'll be focusing on in the first year of his two-year fellowship, presented by the Alfred P. Sloan Foundation. "If all of this is a tree, I've told you about only its roots," he said, noting that a mole may think it has a full picture of an oak or a maple, but until it pops its head through the soil, its perspective is limited.

Loseu's interest in took shape in elementary school in Belarus. His parents were engineers whose work revolved around the applied sciences, and he often played with the many math books and calculators he could find around the house. He quickly learned that mathematics was "the thing I loved most of all."

As an undergraduate student at Belarusian State University, Loseu initially thought he would pursue work in applied mathematics, but the field didn't retain the beauty that he appreciated about pure mathematics.

"Any scientific discovery involves some kind of magic," he said. That is, various pieces that may seem to be completely unrelated eventually start to fit together through the fruits of one's labor. "Since pure math is pure, all this magic is much more clearly seen.

Explore further: Quantum compute this—Mathematicians build code to take on toughest of cyber attacks

add to favorites email to friend print save as pdf

Related Stories

A vexing math problem finds an elegant solution

Nov 14, 2013

( —A famous math problem that has vexed mathematicians for decades has met an elegant solution by Cornell researchers. Graduate student Yash Lodha, working with Justin Moore, professor of mathematics, has described ...

Breaking nature's superfluid symmetry

Sep 06, 2013

Superfluids are an exotic state of matter in which particles flow without experiencing viscosity. Hiroki Ikegami and colleagues from the RIKEN Low Temperature Physics Laboratory in Wako have now observed ...

The 500 phases of matter: Entering a new phase

Dec 21, 2012

(—Forget solid, liquid, and gas: there are in fact more than 500 phases of matter. In a major paper in today's issue of Science, Perimeter Faculty member Xiao-Gang Wen reveals a modern reclassification of all ...

Recommended for you

Destroyed Mosul artefacts to be rebuilt in 3D

Mar 27, 2015

It didn't take long for the scientific community to react. Two weeks after the sacking of the 300 year-old Mosul Museum by a group of ISIS extremists went viral on Youtube, researchers from the ITN-DCH, IAPP ...

Boys plagiarise more than girls at school

Mar 27, 2015

Research by the University of the Balearic Islands has analysed the phenomenon of academic plagiarism among secondary school students. The study, published in the journal Comunicar, confirms that this practi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.