Researchers demonstrate information processing using a light-based chip inspired by our brain

March 31, 2014

In a recent paper in Nature Communications, researchers from Ghent University report on a novel paradigm to do optical information processing on a chip, using techniques inspired by the way our brain works.

Neural networks have been employed in the past to solve pattern recognition problems like speech recognition or image recognition, but so far, these bio-inspired techniques have been implemented mostly in software on a traditional computer. What UGent researchers have done is implemented a small (16 nodes) neural network directly in hardware, using a silicon photonics . Such a chip is fabricated using the same technology as traditional computer chips, but uses light rather than electricity as the information carrier. This approach has many benefits including the potential for extremely high speeds and .

The UGent researchers have experimentally shown that the same chip can be used for a large variety of tasks, like arbitrary calculations with memory on a bit stream or header recognition (an operation relevant in telecom networks: the header is an address indicating where the data needs to be sent). Additionally, simulations have shown that the same chip can perform a limited form of , by recognising individual spoken digits ("one", "two", … etc.).

Explore further: Spinoff to introduce ultrasonic gesture recognition for small devices (w/ Video)

More information: "Experimental demonstration of reservoir computing on a silicon photonics chip," Kristof Vandoorne, Pauline Mechet, Thomas Van Vaerenbergh, Martin Fiers, Geert Morthier, David Verstraeten, Benjamin Schrauwen, Joni Dambre & Peter Bienstman, Nature Communications 5, Article number: 3541, DOI: 10.1038/ncomms4541 , Published: 24 March 2014

Related Stories

D-Wave chip passes rigorous tests

March 5, 2014

With cutting-edge technology, sometimes the first step scientists face is just making sure it actually works as intended.

Photonics: Enabling next-generation wireless networks

March 12, 2014

Wireless transmission at microwave frequencies is important for high-data-rate transmission applications, such as mobile phone networks, satellite links and remote imaging. Now, Xianshu Luo and colleagues from the A*STAR ...

Recommended for you

US Navy keeps electromagnetic cannon in its sights

June 25, 2016

The US Navy is quietly pushing ahead with a radical new cannon that one day could transform how wars are fought, even though some Pentagon officials have voiced concerns over its cost and viability.

Ultra-thin solar cells can bend around a pencil

June 20, 2016

Scientists in South Korea have made ultra-thin photovoltaics flexible enough to wrap around the average pencil. The bendy solar cells could power wearable electronics like fitness trackers and smart glasses. The researchers ...

Mapping coal's decline and the renewables' rise

June 23, 2016

Even as coal-fired power plants across the U.S. are shutting down in response to new environmental regulations and policy mandates, defenders of the emissions-heavy fuel still have cost on their side. Coal, after all, is ...

Flower power—photovoltaic cells replicate rose petals

June 24, 2016

With a surface resembling that of plants, solar cells improve light-harvesting and thus generate more power. Scientists of KIT (Karlsruhe Institute of Technology) reproduced the epidermal cells of rose petals that have particularly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.