Researcher develops more accurate method to measure surface meltwater volume of Greenland ice sheet

Mar 13, 2014
Researcher develops more accurate method to measure surface meltwater volume of Greenland ice sheet
Carl Legleiter, a UW assistant professor of geography, readies an unmanned drone boat before sending it out to record depth and brightness of a water body on the surface of the Greenland ice sheet. Fellow researchers Alberto Behar (left) and Larry Smith also are pictured. Credit: Marco Tedesco

(Phys.org) —A University of Wyoming researcher discovered that using satellite imagery to map the depth of melt ponds and melt-water stream channels on the surface of the Greenland ice sheet could become a new and more accurate way to keep close watch on that ice sheet's accelerated rate of melting.

Carl Legleiter, a UW assistant professor in the Department of Geography, was lead writer on a study that demonstrated, for the first time, the feasibility of using spectrally based depth retrieval from high-spatial resolution commercial of supraglacial (meaning on top of the ice) lakes and streams. Given instrumentation with sufficient spatial resolution, optical can be used to accurately estimate the volume of water stored in large lakes and smaller melt ponds that might go undetected by sensors with larger pixel sizes.

"This paper seeks to establish the method of estimating the depth of lakes and streams on the surface of the ice sheet," Legleiter says. "This remote sensing approach could be a powerful tool for understanding the hydrology of the ice sheet and constraining estimates of sea level rise."

Although several previous studies have mapped the locations and depths of relatively large supraglacial lakes from optical image data, none have attempted to retrieve water depth in supraglacial streams.

"There have been some previous remote sensing studies, but those used larger pixels. There was not as much detail," Legleiter says. "To our knowledge, ours was the first to look at stream channels. We could see enough detail to map those smaller streams and ponds."

Breaking the ice

Research was conducted during July 2012 in southwestern Greenland during the summer . Field data and satellite images were acquired from three primary field sites—the Olsen River, Lake Napoli and Cold Creek. The names of these water bodies were bestowed by the research team.

The Olsen River consisted of a broad, shallow channel where melt water exited a lake that transitioned to a narrower, deeper body of water confined by high banks of ice. Lake Napoli was circular with a depth just past 31 feet. Cold Creek was a shallow, wide and slow-flowing outlet channel from a small lake.

Researcher develops more accurate method to measure surface meltwater volume of Greenland ice sheet

In addition to satellite images, the research team employed an unmanned motorized drone boat that was used to deploy an instrument called a spectroradiometer. The instrument measures reflectance, or the inherent color and brightness of an object, such as the water in the ponds and channels as well as the ice beneath. The boat's instrument payload also included an echo sounder, used to measure water depth.

"It was a way of conducting remote sensing on the ground, so we could develop a relationship between an image-derived quantity, the ratio of two spectral bands, and the water depth," Legleiter says.

The unmanned boat was used in the event that a stream would suddenly disappear into a moulin, a large pit that serves as an opening into the ice sheet.

A new area of research

This was Legleiter's first foray into studying water bodies on the surface of an ice sheet. Legleiter, who primarily studies terrestrial rivers, including the Snake River, was contacted by Laurence Smith, a professor and chair of the Department of Geography at UCLA, to participate in the study.

"He called me and asked if we could do this (type of measurement) for rivers on the surface of the Greenland ice sheet," Legleiter says. "This is a new field of study for me."

Legleiter, who was in Greenland for only a week, says he particularly enjoyed the 45-minute helicopter rides originating from Kangerlussuaq and traveling over breath-taking vistas en route to the measurement study site.

"It was an adventure. It's one of the most exciting things I've ever done," he says.

And dangerous. Each day, the helicopter delicately touched its landing pads on the ice to probe for a safe spot and avoid crevasses, while a flight crew member used an ice axe to test the ice as well.

"We took a lot of precautions," Legleiter says.

Legleiter hopes to return to Greenland for more research, perhaps in summer 2015. He is one member of a large scientific team that has submitted a proposal to NASA to conduct further work on the Greenland ice sheet. If the proposal is successful, it would include funding for unmanned aerial vehicles (UAVs), also referred to as drones.

"They would fly back and forth over the ice sheet all summer long, and provide broader spatial coverage," he says. "The drones would make repeated movements over the during the melt season, and record changes as the melt season goes on."

Explore further: Lakes discovered beneath Greenland ice sheet

More information: Legleiter, C. J., Tedesco, M., Smith, L. C., and Overstreet, B. T.: "Mapping the bathymetry of supraglacial lakes and streams on the Greenland Ice Sheet using field measurements and high resolution satellite images," The Cryosphere Discuss., 7, 4741-4773, DOI: 10.5194/tcd-7-4741-2013, 2013.

add to favorites email to friend print save as pdf

Related Stories

Lakes discovered beneath Greenland ice sheet

Nov 27, 2013

The study, published in Geophysical Research Letters, discovered two subglacial lakes 800 metres below the Greenland Ice Sheet. The two lakes are each roughly 8-10 km2, and at one point may have been up to t ...

NASA data shed new light on changing Greenland ice

Mar 10, 2014

Research using NASA data is giving new insight into one of the processes causing Greenland's ice sheet to lose mass. A team of scientists used satellite observations and ice thickness measurements gathered ...

Earth from space: Ice in motion

Oct 04, 2013

Clouds blur our view of the snow below in parts of this image acquired over the southern tip of Greenland by the Landsat-8 satellite on 30 May.

Sediment wedges not stabilizing West Antarctic Ice Sheet

Sep 03, 2013

The stability of the West Antarctic Ice Sheet is uncertain as climate changes. An ice sheet such as the West Antarctic Ice Sheet that is grounded well below sea level on a bed that slopes toward the interior of the sheet ...

Giant channels discovered beneath Antarctic ice shelf

Oct 06, 2013

Scientists have discovered huge ice channels beneath a floating ice shelf in Antarctica. At 250 metres high, the channels are almost as tall as the Eiffel tower and stretch hundreds of kilometres along the ...

Recommended for you

New signs of eruption at Iceland volcano

13 hours ago

Teams monitoring Iceland's Bardarbunga volcano have found evidence of a possible underground eruption as powerful earthquakes continue to shake the area, Icelandic authorities said Thursday.

NASA sees a weaker Tropical Storm Marie

13 hours ago

When NOAA's GOES-West satellite captured an image of what is now Tropical Storm Marie, weakened from hurricane status on August 28, the strongest thunderstorms were located in the southern quadrant of the ...

TRMM analyzes Hurricane Cristobal

13 hours ago

NASA's Tropical Rainfall Measuring Mission or TRMM Satellite provided a look under the hood of Hurricane Cristobal as it continues moving north and paralleling the U.S. East Coast. NASA's HS3 hurricane mission ...

User comments : 0