Researchers use squeezed light to enhance photonic force microscopy

Feb 20, 2014 by Bob Yirka report
Researchers use squeezed light to enhance photonic force microscopy
Credit: Michael Taylor/University of Queensland / via Physics Synopsis

(Phys.org) —A team of researchers working in Australia has used "squeezed light" to enhance the sharpness of images produced using photonic force microscopy. In their paper published in Physical Review Letters, the team describes how they applied a property of quantum mechanics to microscopy to offer resolution enhancement of up to 14 percent.

Photonic force microscopy is a type of microscopy where tiny fat granules and light are used to obtain images of objects too small to be seen with other techniques—measurements are taken of the light that is bounced back to create an image. The method suffers, however, when trying to create images beyond its scope—blurriness occurs due to noise from the light source.

Blurriness from a occurs because of the nature of photons—they're both wave and particle and as such don't align with one another when traveling. When light strikes a source the photons are all at different points in their wave pattern. This diffraction is what causes the blurriness in microscopy. To get around it, the researchers with this latest effort used a technique where the light was squeezed before striking the object, guaranteeing that all the photons would be aligned.

Squeezing light is based on the Heisenberg uncertainty principle, but instead of trying to deal with measuring the speed or position of a photon at a given point in time, it applies to the same sort of relationship between its phase and intensity. The researchers used this relationship to cause the photons that arrived at a target to all be in the same wave alignment, thus reducing diffraction and the inevitable blurriness that occurs when normal is used in image creation.

The overall objective of the researchers in this effort was to allow for a better view of the inner workings of living cells—specifically, they'd like to get a view of the pores that exist in cell walls that allow (and prevent) material to pass in and out. Current technology allows for viewing the pores, but only those in dead cells. Photonic force microscopy on the other hand can be used on living cells—thus improving its resolution and helping the researchers achieve their ultimate goal.

Explore further: Researchers use quantum entanglement to improve differential interference contrast microscopy

More information: Subdiffraction-Limited Quantum Imaging within a Living Cell, Phys. Rev. X 4, 011017 (2014) [7 pages] prx.aps.org/abstract/PRX/v4/i1/e011017

Abstract
We report both subdiffraction-limited quantum metrology and quantum-enhanced spatial resolution for the first time in a biological context. Nanoparticles are tracked with quantum-correlated light as they diffuse through an extended region of a living cell in a quantum-enhanced photonic-force microscope. This allows spatial structure within the cell to be mapped at length scales down to 10 nm. Control experiments in water show a 14% resolution enhancement compared to experiments with coherent light. Our results confirm the long-standing prediction that quantum-correlated light can enhance spatial resolution at the nanoscale and in biology. Combined with state-of-the-art quantum light sources, this technique provides a path towards an order of magnitude improvement in resolution over similar classical imaging techniques.

add to favorites email to friend print save as pdf

Related Stories

Molecular collisions now imaged better than ever

Feb 12, 2014

Molecular physicists from Radboud University Nijmegen have produced images of the changes in direction of colliding nitrogen monoxide molecules (NO) with unprecedented sharpness. By combining a Stark decelerator ...

On-chip quantum buffer realized

Nov 13, 2013

Nippon Telegraph and Telephone Corp. has realized a quantum buffer integrated on an optical waveguide. The buffer is based on the "slow light effect", where the propagation speed of a pulsed light in a special ...

The paths of photons are random, but coordinated

Dec 20, 2012

(Phys.org)—Researchers at the Niels Bohr Institute have demonstrated that photons (light particles) emitted from light sources embedded in a complex and disordered structure are able to mutually coordinate ...

Squeezed light from single atoms

Jun 30, 2011

(PhysOrg.com) -- Max Planck Institute of Quantum Optics scientists generate amplitude-squeezed light fields using single atoms trapped inside optical cavities.

Recommended for you

1980s aircraft helps quantum technology take flight

19 minutes ago

What does a 1980s experimental aircraft have to do with state-of-the art quantum technology? Lots, as shown by new research from the Quantum Control Laboratory at the University of Sydney, and published in Nature Physics today. ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

User comments : 0