Cancer drugs hitch a ride on 'smart' gold nanoshells

February 13, 2014

Nanoparticles capable of delivering drugs to specifically targeted cancer cells have been created by a group of researchers from China.

The multifunctional 'smart' gold nanoshells could lead to more effective cancer treatments by overcoming a major limitation of modern chemotherapy techniques—the ability to target cancer cells specifically and leave untouched.

Small peptides situated on the surface of the nanoshells are the key to the improved targeting ability, guiding the nanoshells to specific cancer cells and attaching to markers on the surface of the cells. The acidic environment of the cancer cells then triggers the offloading of the anticancer drugs.

The specific nanostructure of the gold nanoshells could also allow near-infrared light to be absorbed and converted into heat, opening up the possibility of using the nanoshells in targeted hyperthermia treatment—another form of cancer treatment whereby cancer cells are exposed to slightly higher temperatures than usual to destroy them.

The first results of the nanoshells' performance have been published today, 14 February, in IOP Publishing's journal Biomedical Materials.

The researchers, from East China Normal University and Tongji University, used the gold nanoshells as a building block to which they attached the commonly used anticancer drug Doxorubicin (DOX) and a specific peptide known as A54.

The gold nanoshells had diameters of around 200 nanometres—more than 50 times smaller than a red blood cell.

When tested on human liver cancer cells, the uptake of the nanoshells that had the A45 peptide was three times greater than the uptake of the control nanoshells without the peptide. There was also a significantly reduced uptake of both types of nanoshell by normal healthy cells.

The cancer cells were also treated with the gold nanoshells in a heated water bath and were shown to deliver a notable therapeutic effect compared to just the chemotherapy, demonstrating the potential of the hyperthermia treatment.

Lead author of the study Dr Shunying Liu, from East China Normal University, said: "The therapeutic activity of most is limited by their systematic toxicity to proliferating cells, including some . Overcoming this problem remains a great challenge for chemotherapy."

"In our study we placed a targeting peptide on the nanoshells, which have been demonstrated to be specific to live , improving the targeting ability and drug delivery of the gold nanoshells.

"The next step of our research is to test the 'smart' nanoshells in vivo on a liver cancer mouse model. We will also examine how the size of the nanoshells changes their efficacy and how efficient the nanoshells are at converting near-infrared light into heat."

Explore further: Nanoshell structures: Self-assembly method yields materials with unique optical properties

More information: "'Smart' gold nanoshells for combined cancer therapy and hyperthermia" 2014 Biomed. Mater. 9 025012.

Related Stories

Nanoshells aid in killing breast tumors

November 1, 2010

Using tiny gold "nanoshells" to deliver just a little heat to breast tumor cells already treated with radiation boosts the killing potential of the treatment - not just shrinking the tumor but killing the cancer stem cells, ...

Double strike to fight cancer

March 1, 2011

( -- Diagnosis and treatment form the basis of modern medicine. Traditionally, they are two separate steps; however, it doesn’t have to be that way. The term “theranostic” refers to the combination ...

Recommended for you

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.