Sneezing sponges suggest existence of sensory organ

Jan 14, 2014 by Bryan Alary

(Phys.org) —When Danielle Ludeman decided to leave her hometown of Vancouver to study evolutionary biology at the University of Alberta, she knew she was in for a challenge that would help her discover things about science and, in turn, herself.

What she didn't count on were the hours, days and months she'd spend watching in mid-.

It sounds like a strange way to pass time, but sneezing sponges have become a major part of Ludeman's studies at the U of A, including a new paper that points to the sneeze as evidence of a in one of the most basic multicellular organisms on Earth.

"The sneeze can tell us a lot about how the sponge works and how it's responding to the environment," said Ludeman, a master's student in the Faculty of Science. "This paper really gets at the question of how sensory systems evolved. The sponge doesn't have a , so how can it respond to the environment with a sneeze the way another animal that does have a nervous system can?"

Ludeman started the work as part of an undergraduate research honours project, working under the supervision of Sally Leys, Canada Research Chair in Evolutionary Developmental Biology. It was Leys and a former graduate student who first discovered that sponges do in fact sneeze.

The sponge is a filter feeder that relies totally on water flow through its body for food, oxygen and waste removal. Sneezing, a 30- to 45-minute process that sees the entire body of the sponge expand and contract, allows it to respond to physical stimuli such as sediment in the water.

This video is not supported by your browser at this time.

Time-lapse sneezes

For their study, Ludeman and Leys used a variety of drugs to elicit sneezes in freshwater sponges and observed the process using fluorescent dye—all recorded using time-lapse video. Their efforts focused on the sponge's osculum, which controls water exiting the organism, including water expelled during a sneeze.

Through a series of lab experiments, the pair discovered that ciliated cells lining the osculum play a role in triggering sneezes. In other animals, cilia function like antennae, helping cells respond to stimuli in a co-ordinated manner. In the sponge, their localized presence in the osculum and their sensory function suggest the osculum is in fact a sensory organ.

"For a sponge to have a sensory organ is totally new. This does not appear in a textbook; this doesn't appear in someone's concept of what sponges are permitted to have," said Leys.

Leys said the discovery raises new questions about how sensory systems may have evolved in the sponge and other animals, including ones with nervous systems. It's possible this is unique to the sponge, she said, evolving over the last 600 million years. Or it may be evidence of a common mechanism shared among all animals, and retained over evolutionary history, as demonstration of its essential function.

For Ludeman, the paper represents the latest chapter in her studies at the U of A, which also included a year-long exchange in Australia and several months at the Bamfield Marine Sciences Centre on Vancouver Island (where, it just so happens, she also studied sponges). Having the flexibility to study abroad was part of the appeal of the U of A, she said.

"Those two experiences were huge during my undergrad. The Faculty of Science at the U of A gave me those opportunities."

Despite all the hours filming and observing sneezes, Ludeman says she's still not sick of sponges.

"We know so little about how a sponge works, and there are so many cool questions you can ask."

Explore further: Invasive parasitic fly on Galapagos Islands probably came from mainland Ecuador

More information: "Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges." Danielle A Ludeman, Nathan Farrar, Ana Riesgo, Jordi Paps, Sally P Leys. BMC Evolutionary Biology 2014, 14:3 DOI: 10.1186/1471-2148-14-3

Related Stories

New research touches a nerve

Aug 20, 2008

University of Queensland researchers have traced the origins of one of the most important steps in animal evolution – the development of nerves.

Recommended for you

Telling the time of day by color

17 hours ago

Research by scientists at The University of Manchester has revealed that the colour of light has a major impact on how the brain clock measures time of day and on how the animals' physiology and behavior adjust accordingly. ...

Aphrodisiac for fish and frogs discovered

22 hours ago

A supplement simply added to water has been shown to boost reproduction in nematodes (roundworms), molluscs, fish and frogs – and researchers believe it could work for humans too.

Evolution puts checks on virgin births

22 hours ago

It seems unnatural that a species could survive without having sex. Yet over the ages, evolution has endowed females of certain species of amphibians, reptiles and fish with the ability to clone themselves, ...

Humans can't resist those puppy-dog eyes

Apr 16, 2015

When humans and their four-legged, furry best friends look into one another's eyes, there is biological evidence that their bond strengthens, researchers report.

Roundworm parasite targets canine eyes

Apr 16, 2015

(HealthDay)—A small number of dogs and cats across the United States have been infected by a roundworm parasite that targets the eye, according to a new report.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

riksaga
not rated yet Jan 15, 2014
no nervous system and it can still sneeze - weird.

If it has a 6th sense that would be really interesting

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.