Magneto-optical nonreciprocal devices in silicon photonics

January 9, 2014
Figure caption: (A) Schematic illustration of an SOI waveguide optical isolator based on MZI, (B) Process of direct bonding technique, (C) Microscope image of a fabricated optical isolator, (D) Measured fiber-to-fiber transmittance of the fabricated optical isolator as a function of the wavelength.

In a paper published in Science and Technology of Advanced Materials today, researchers demonstrated the first optical isolator on silicon waveguide platforms.

As the recent demand for optical interconnections is increased, much attention has been paid to because of the small device footprint and CMOS compatible process. An optical isolator is essential for protecting optical active devices from reflected light even in short-distance transmission systems.

However, the bottleneck of integrated optical isolator lies in difficulty in growing magneto-optical garnet crystals on commonly used optical waveguide platforms such as .

Yuya Shoji and Tetsuya Mizumoto of Tokyo Institute of Technology, approached the problem using a direct bonding technique which realizes direct contact of different . The authors have demonstrated the first optical isolator on silicon waveguide platforms.

In this paper published in Science and Technology of Advanced Materials, they describe the direct bonding, design of the waveguide isolator, and recent progress on a silicon isolator with an optical isolation of 30 dB and a four port optical circulator. They also introduce approaches done by other research groups in the paper.

Compared to the state-of-the-art deposition approach, the bonding technique is advantageous because a single-crystalline magneto-optical garnet having a large magneto-optical effect can be used.

Explore further: Caltech-led engineers solve longstanding problem in photonic chip technology

More information: "Magneto-optical non-reciprocal devices in silicon photonics," Yuya Shoji and Tetsuya Mizumoto 2014 Sci. Technol. Adv. Mater. 15 014602 DOI: 10.1088/1468-6996/15/1/014602

Related Stories

50 meters of optical fiber shrunk to the size of microchips

November 28, 2013

Long coils of optical waveguides any structure that can guide light, like conventional optical fiber can be used to create a time delay in the transmission of light. Such photonic delays are useful in military application ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.