Researchers take magnetic waves for a spin

Jan 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and other consumer products.

Their method, reported in the most recent issue of the journal Nanotechnology, employs "," which are waves that move in magnetic materials. Physically, these spin waves are much like water waves—like those that propagate on the surface of an ocean. However, with a purpose akin to that of (i.e., light and ), spin waves can efficiently transfer energy and information from place to place.

"Spin waves hold tremendous promise in improving the functionality of a range of technologies," says Andrew Kent, a professor in NYU's Department of Physics and one of the paper's co-authors. "Our results mark another vital step in harnessing a resource that is faster and more energy efficient that what we rely on today."

Currently, electromagnetic waves in antennas can be converted into spin waves. However, the resulting spin waves have a long wavelength and propagate slowly. In contrast, short-wavelength spin waves can move over greater distances, more quickly, and with less energy, and thus present the possibility of improving a range of communications and electronic devices.

Yet, scientists have had difficulty in creating such spin waves. To overcome this obstacle, the NYU researchers developed "spin torque nano-oscillators" (STNO)—nanoscale devices that can convert a direct current into spin waves. They showed that these oscillators can be arranged in arrays to direct the spin wave energy, much the way antennas are used to direct electromagnetic waves.

Crucially, they developed a method that allows the spin waves to navigate in specific patterns and directions throughout a magnetic material. Their idea relies on the interference of waves and controlling the interference to produce specific wave propagation patterns.

Explore further: Nanoscale friction: High energy losses in the vicinity of charge density waves

Related Stories

Generation of spin current by acoustic wave spin pumping

Sep 26, 2011

Tohoku University, Japan Science and Technology Agency (JST) and Japan Atomic Energy Agency (JAEA) announced on August 22, 2011 that Kenichi Uchida, a PhD student, and Professor Eiji Saitoh of Tohoku University and their ...

Scientists spin photons to send light in one direction

Apr 19, 2013

(Phys.org) —Researchers at King's College London have achieved previously unseen levels of control over the travelling direction of electromagnetic waves in waveguides. Their ground-breaking results could ...

Nanoscale spin waves can replace microwaves

Sep 07, 2011

A group of scientists from the University of Gothenburg and the Royal Institute of Technology (KTH), Sweden, have become the first group in the world to demonstrate that theories about nanoscale spin waves ...

Recommended for you

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

Towards more efficient solar cells

Aug 13, 2014

A layer of silicon nanocrystals and erbium ions may help solar cells to extract more energy from the ultraviolet (UV, high-energy) part of the solar spectrum. Experimental physicists from the FOM Foundation, ...

User comments : 0