Researchers take magnetic waves for a spin

Jan 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and other consumer products.

Their method, reported in the most recent issue of the journal Nanotechnology, employs "," which are waves that move in magnetic materials. Physically, these spin waves are much like water waves—like those that propagate on the surface of an ocean. However, with a purpose akin to that of (i.e., light and ), spin waves can efficiently transfer energy and information from place to place.

"Spin waves hold tremendous promise in improving the functionality of a range of technologies," says Andrew Kent, a professor in NYU's Department of Physics and one of the paper's co-authors. "Our results mark another vital step in harnessing a resource that is faster and more energy efficient that what we rely on today."

Currently, electromagnetic waves in antennas can be converted into spin waves. However, the resulting spin waves have a long wavelength and propagate slowly. In contrast, short-wavelength spin waves can move over greater distances, more quickly, and with less energy, and thus present the possibility of improving a range of communications and electronic devices.

Yet, scientists have had difficulty in creating such spin waves. To overcome this obstacle, the NYU researchers developed "spin torque nano-oscillators" (STNO)—nanoscale devices that can convert a direct current into spin waves. They showed that these oscillators can be arranged in arrays to direct the spin wave energy, much the way antennas are used to direct electromagnetic waves.

Crucially, they developed a method that allows the spin waves to navigate in specific patterns and directions throughout a magnetic material. Their idea relies on the interference of waves and controlling the interference to produce specific wave propagation patterns.

Explore further: Scientists spin photons to send light in one direction

Related Stories

Generation of spin current by acoustic wave spin pumping

Sep 26, 2011

Tohoku University, Japan Science and Technology Agency (JST) and Japan Atomic Energy Agency (JAEA) announced on August 22, 2011 that Kenichi Uchida, a PhD student, and Professor Eiji Saitoh of Tohoku University and their ...

Scientists spin photons to send light in one direction

Apr 19, 2013

(Phys.org) —Researchers at King's College London have achieved previously unseen levels of control over the travelling direction of electromagnetic waves in waveguides. Their ground-breaking results could ...

Nanoscale spin waves can replace microwaves

Sep 07, 2011

A group of scientists from the University of Gothenburg and the Royal Institute of Technology (KTH), Sweden, have become the first group in the world to demonstrate that theories about nanoscale spin waves ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...