Researchers present a new method of wirelessly recharging medical device batteries with ultrasound

Dec 04, 2013

Human beings don't come with power sockets, but a growing numbers of us have medical implants that run off electricity. To keep our bionic body parts from powering down, a group of Arizona researchers is developing a safe, noninvasive, and efficient means of wireless power transmission through body tissue. The team presents their findings at the 166th meeting of the Acoustical Society of America, held Dec. 2 – 6 in San Francisco, Calif.

Medical implants treat a variety of conditions such as chronic pain, Parkinson's disease, deep brain tremors, heart rhythm disturbances, and nerve and muscle disorders. If the batteries in the devices lose their charge, minor surgery is needed to replace them, causing discomfort, introducing the risk of infection, and increasing the cost of treatment.

This is a scenario the Arizona researchers are aiming to change.

Their novel approach is based on piezoelectric generation of ultrasound. The Greek root, "piezo", means "squeeze." In piezoelectrical systems, materials are squeezed or stressed to produce a voltage. In turn, applied voltages can cause compression or extension. Piezoelectric materials have specific crystalline structures. The team's piezoelectric system has been tested in animal tissue with encouraging results.

"The goal of this approach is to human implantable (IPGs)," explained lead researcher Leon J. Radziemski of Tucson-based Piezo Energy Technologies. "Charging experiments were performed on 4.1 Volt medical-grade lithium-ion batteries. Currents of 300 milliamperes (mA) have been delivered across tissue depths of up to 1.5 centimeters. At depths of 5 centimeters, 20 mA were delivered. Currents such as these can service most medical-grade ."

With Dr. Inder Makin, an experienced ultrasound researcher, the team has tested the device in pigs to demonstrate safe charging over several hours of ultrasound exposure. The system works like this: A source such as a wall plug or battery powers the transmitter. Ultrasound passes from the transmitter through the intervening tissue to the implanted IPG housing the piezoelectric receiver. After positioning the transmitter, the patient can control the procedure from a hand-held device that communicates with the implant. When charging is complete, the implant signals this and turns off the transmitter.

Wireless recharging has been tried before using a different technology, electromagnetic recharging. Given the proliferation of battery-powered medical implanted therapies, the Radziemski team sees an emerging and expanding need for increased rechargeable power options.

"Ultrasound rechargeable batteries can extend the time between replacements considerably, reducing health care costs and patient concerns," Radziemski said. The next step involves further testing and development in hopes of commercializing the technology within two to five years.

Explore further: Key factors for wireless power transfer

More information: Presentation 3pBA5, "An ultrasound technique for wireless power transmission through tissue to implanted medical devices," will take place on Wednesday, Dec. 4, 2013, at 2:00 p.m. PST. The abstract describing this work can be found here: asa2013.abstractcentral.com/planner.jsp

add to favorites email to friend print save as pdf

Related Stories

Key factors for wireless power transfer

Jul 31, 2013

What happens to a resonant wireless power transfer system in the presence of complex electromagnetic environments, such as metal plates? A team of researchers explored the influences at play in this type of situation, and ...

A millimeter-scale, wirelessly powered cardiac device

Aug 31, 2012

A team of engineers at Stanford has demonstrated the feasibility of a super-small, implantable cardiac device that gets its power not from batteries, but from radio waves transmitted from outside the body. The implanted device ...

New energy storage system for renewable technologies

Dec 03, 2013

Hitachi today announced that it has developed an all-in one, container-type energy storage system as a core energy product for ensuring the stable use of distributed renewable energy such as wind and solar ...

Composite battery boost

Dec 04, 2013

(Phys.org) —New composite materials based on selenium (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to ...

Recommended for you

New approach to form non-equilibrium structures

6 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

8 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

12 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

12 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0