Global map to predict giant earthquakes

December 12, 2013

A team of international researchers, led by Monash University's Associate Professor Wouter Schellart, have developed a new global map of subduction zones, illustrating which ones are predicted to be capable of generating giant earthquakes and which ones are not.

The new research, published in the journal Physics of the Earth and Planetary Interiors, comes nine years after the giant earthquake and tsunami in Sumatra in December 2004, which devastated the region and many other areas surrounding the Indian Ocean, and killed more than 200,000 people.

Since then two other giant earthquakes have occurred at subduction zones, one in Chile in February 2010 and one in Japan in March 2011, which both caused massive destruction, killed many thousands of people and resulted in billions of dollars of damage.

Most earthquakes occur at the boundaries between tectonic plates that cover the Earth's surface. The largest earthquakes on Earth only occur at subduction zones, plate boundaries where one plate sinks (subducts) below the other into the Earth's interior. So far, seismologists have recorded giant earthquakes for only a limited number of segments. But accurate seismological records go back to only ~1900, and the recurrence time of giant earthquakes can be many hundreds of years.

"The main question is, are all subduction segments capable of generating giant earthquakes, or only some of them? And if only a limited number of them, then how can we identify these," Dr Schellart said.

Dr Schellart, of the School of Geosciences, and Professor Nick Rawlinson from the University of Aberdeen in Scotland used earthquake data going back to 1900 and data from subduction zones to map the main characteristics of all active subduction zones on Earth. They investigated if those subduction segments that have experienced a giant earthquake share commonalities in their physical, geometrical and geological properties.

They found that the main indicators include the style of deformation in the plate overlying the subduction zone, the level of stress at the subduction zone, the dip angle of the subduction zone, as well as the curvature of the subduction zone plate boundary and the rate at which it moves.

Through these findings Dr Schellart has identified several subduction zone regions capable of generating giant earthquakes, including the Lesser Antilles, Mexico-Central America, Greece, the Makran, Sunda, North Sulawesi and Hikurangi.

"For the Australian region subduction zones of particular significance are the Sunda subduction zone, running from the Andaman Islands along Sumatra and Java to Sumba, and the Hikurangi subduction segment offshore the east coast of the North Island of New Zealand. Our research predicts that these zones are capable of producing giant earthquakes," Dr Schellart said.

"Our work also predicts that several other subduction segments that surround eastern Australia (New Britain, San Cristobal, New Hebrides, Tonga, Puysegur), are not capable of producing giant earthquakes."

Explore further: Australian continent to blame for Samoa, Sumatra quakes

More information: www.sciencedirect.com/science/article/pii/S0031920113001465

Related Stories

Europe may be slowly disappearing under Africa: research

April 12, 2011

(PhysOrg.com) -- At the European Geosciences Union (EGU) meeting last week, lead researcher Rinus Wortel from the University of Utrecht presented the findings that Europe is slowly moving under Africa, creating a new subduction ...

Scientists pinpoint great-earthquake hot spots

December 5, 2012

The world's largest earthquakes occur at subduction zones - locations where a tectonic plate slips under another. But where along these extended subduction areas are great earthquakes most likely to happen? Scientists have ...

New 'embryonic' subduction zone found

June 17, 2013

(Phys.org) —A new subduction zone forming off the coast of Portugal heralds the beginning of a cycle that will see the Atlantic Ocean close as continental Europe moves closer to America.

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gwrede
not rated yet Dec 12, 2013
Living in an area where every ten thousand years there is a Preposterous earthquake, should be scary. Until you realise that even there, the lifetime chance of seeing such an earthquake, is only one per cent.

Now, that is way less than what people in San Francisco can expect.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.