Ancient fresh water lake on Mars could have sustained life, Curiosity researchers show

Ancient fresh water lake on Mars could have sustained life, Curiosity researchers show
Mars Hand Lens Imager (MAHLI) image of a brushed, gray bedrock outcrop of Sheepbed mudstone near the Cumberland drill hole. Protrusion of nodules and minibowls results from eolian scouring of rock surface, creating wind-tails that trend NE-SW. Preference for steep faces of wind-tails on NE side suggests long-term averaged paleowind direction from NE to SW. For more information, please see Figure 3 in the manuscript by Farley et al. Credit: Science/AAAS

Scientists have found evidence that there was once an ancient lake on Mars that may have been able to support life, in research published today in the journal Science.

A team of researchers from NASA's Mars Science Laboratory (MSL) Curiosity rover mission, which includes a researcher from Imperial College London, have analysed a set of sedimentary rock outcrops at a site named Yellowknife Bay in Gale Crater, near the Martian equator. These mudstones have revealed that Gale Crater, a 150 km wide impact basin with a mountain at its centre, sustained at least one lake around 3.6 billion years ago.

The scientists believe that the lake may have lasted for tens if not hundreds of thousands of years.

The team's analysis showed that the lake was calm and likely had fresh water, containing key biological elements such as carbon, hydrogen, oxygen, nitrogen and sulphur. Such a lake would provide perfect conditions for simple such as chemolithoautotrophs to thrive in.

On Earth, chemolithoautotrophs are commonly found in caves and around hydrothermal vents. The microbes break down rocks and minerals for energy.

Mudstones generally form in calm conditions. They are created by very fine sediment grains settling layer-by-layer on each other, in still water.

Ancient fresh water lake on Mars could have sustained life, Curiosity researchers show
Sedimentary rocks of the Yellowknife Bay formation. For more information on each individual image, please see Figure 5 in the manuscript by Grotzinger et al. Credit: Science/AAAS

Professor Sanjeev Gupta, a member of the MSL mission from the Department of Earth Science and Engineering at Imperial College London and a co-author on the papers, says: "It is important to note that we have not found signs of ancient life on Mars. What we have found is that Gale Crater was able to sustain a lake on its surface at least once in its ancient past that may have been favourable for microbial life, billions of years ago. This is a huge positive step for the exploration of Mars.

"It is exciting to think that billions of years ago, ancient microbial life may have existed in the 's calm waters, converting a rich array of elements into energy. The next phase of the mission, where we will be exploring more rocky outcrops on the crater's surface, could hold the key whether life did exist on the red planet."

In previous studies, Professor Gupta and the MSL team have found evidence of water on Mars' surface in other rocks such as conglomerates. However, the new research provides the strongest evidence yet that Mars could have been habitable enough for life to take hold.

Ancient fresh water lake on Mars could have sustained life, Curiosity researchers show
Map of diagenetic features showing spatial relationships between fabric elements. The rock surface coincides with a bedding plane. Note that nodules and hollow nodules pass laterally into raised ridges suggesting variations in lithologic or diagenetic fluid properties. For more information, please see Figure 7 in the manuscript by Grotzinger et al. Credit: Science/AAAS

The team analysed the geology and chemistry of the mudstones by drilling into the rock using the MSL six-wheeled science laboratory, which is remotely operated by the MSL team from the Jet Propulsion Laboratory in Pasadena in the USA.

The next step will see the team using the rover to explore Gale Crater for further evidence of ancient lakes or other habitable environments in the thick pile of scattered across the crater's surface.

More information: "A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars", Science, 9 December 2013 by J.P. Grotzinger and colleagues
"Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars," Science, 9 December 2013, by S.M. McLennan and colleagues
"Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars" Science, 9 December 2013, by D.W Ming and colleagues
"Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars" Science, 9 December 2013, by D.T Vaniman and colleagues
"In-situ radiometric and exposure age dating of the Martian surface", Science, 9 December 2013, by K. Farley and colleagues

For all papers: mars.jpl.nasa.gov/msl/mission/ … ence/researchpapers/ and gps.caltech.edu/~grotz/Publications/MSL%20Publications.html

Journal information: Science

Citation: Ancient fresh water lake on Mars could have sustained life, Curiosity researchers show (2013, December 9) retrieved 3 May 2024 from https://phys.org/news/2013-12-ancient-fresh-lake-mars-sustained.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Ancient streambed found on surface of Mars

0 shares

Feedback to editors