A better motor for the Mars Rover

November 21, 2013 by Angela Herring
Elias Brassitos, a doctoral candidate in Distinguished Professor Dinos Mavroidis' Biomedical Mechatronics Laboratory, is developing a rotary robotic actuator that produces more power in a lighter package for a manipulator arm on NASA's Mars Rover. Credit: Brooks Canaday

In the world of robotics, identifying actuators that are strong and compact is probably one of the most important open technological problems yet to be resolved. More often than not, the mechanical elements that translate data into doing are big, rough, and generally unfriendly for use in everyday robotics, said Dinos Mavroidis, Distinguished Professor of Mechanical and Industrial Engineering at Northeastern University.

In the mid-2000s, Mavroidis' lab set out to develop a new kind of actuator—small enough to sit inside the joints of prosthetic limbs, but powerful enough for everyday tasks such as lifting and walking.

Backed by two new grants—one from the National Science Foundation, the other from the National Aeronautics and Space Administration—Mavroidis' team will work to tailor the technology for use in advanced applications as well as everyday household robots.

The gear bearing drive, or GBD, as the team's unique actuator is called, consists of a motor embedded directly inside the gear transmission, allowing for cheaper, lighter, and stronger functioning. The GBD is a compact mechanism with two key abilities. It operates as an actuator providing torque and as a joint providing support. Back in 2006, Mavroidis and then graduate student Brian Weinberg developed the idea in collaboration with John Vranish, a NASA Goddard Space Flight Center engineer.

Elias Brassitos, a doctoral candidate in Mavroidis' lab, will use funding from a Space Technology Research Fellowship to develop the GBD for use on the Mars Rover. "For space applications, everything needs to be lighter and stronger," said Brassitos, who noted that the device would replace the entire joint assembly for the rover's manipulator, the arm that extends outside the vehicle to collect rock samples and other things

"Mobile Robotics, particularly the use of rovers as part of a wider NASA exploration strategy, puts pressures on actuation technology," said Brett Kennedy, supervisor of the Robotic Vehicles and Manipulators Group at the Jet Propulsion Laboratory in Pasadena, Calif. "We are always looking for ways to pack more torque, more power, and more functions into smaller packages," added Kennedy, who has high hopes that the GBD will help them do just that.

First, Brassitos must design various GBD architectures, each of which might be good for different applications. He'll design and build a prototype at Northeastern, and then assemble and test the device at the JPL.

While Brassitos works to develop the GBD for space, another graduate student will work to "commercialize it for earth."

In collaboration with the startup company Foodinie, which aims to make robots for the modern household kitchen, Andy Kong and Mavroidis are developing an off-the-shelf version of the gear bearing drive that inventors can use for a variety of applications. In some cases, the team will develop it for specialized needs as in the case of the Mars rover.

"There is a possibility for the GBD to be a source for innovation in the area of compact actuators for robotic systems," Mavroidis said.

Explore further: Strong robotic arm extends from next Mars rover

Related Stories

Strong robotic arm extends from next Mars rover

September 16, 2010

(PhysOrg.com) -- Tests underway in a JPL clean room will refine the precision of movements by a robotic arm that can reach more than 7 feet in front of NASA's Curiosity Mars rover.

Three generations of rovers with crouching engineers

January 20, 2012

(PhysOrg.com) -- Two spacecraft engineers join a grouping of vehicles providing a comparison of three generations of Mars rovers developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The setting is JPL's Mars Yard ...

Mars rover self-portrait shoot uses arm choreography

December 12, 2012

(Phys.org)—The robotic arm on NASA's Mars rover Curiosity held the rover's Mars Hand Lens Imager (MAHLI) camera in more than 50 positions in one day to generate a single scene combining all the images, creating a high-resolution, ...

Curiosity performs warm reset

November 11, 2013

(Phys.org) —NASA's Mars rover Curiosity experienced an unexpected software reboot (also known as a warm reset) yesterday (11/7/13) during a communications pass as it was sending engineering and science data to the Mars ...

Recommended for you

At Saturn, one of these rings is not like the others

September 2, 2015

When the sun set on Saturn's rings in August 2009, scientists on NASA's Cassini mission were watching closely. It was the equinox—one of two times in the Saturnian year when the sun illuminates the planet's enormous ring ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Image: Hubble sees a youthful cluster

August 31, 2015

Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.