The search for medium-sized black holes

Nov 27, 2013
The magenta spots in this image show two black holes in the spiral galaxy called NGC 1313, or the Topsy Turvy galaxy. Both black holes belong to a class called ultraluminous X-ray sources, or ULXs. The magenta X-ray data come from NASA's Nuclear Spectroscopic Telescopic Array, and are overlaid on a visible image from the Digitized Sky Survey. ULXs consist of black holes actively accreting, or feeding, off material drawn in from a partner star. Astronomers are trying to figure out why ULXs shine so brightly with X-rays. NuSTAR's new high-energy X-ray data on NGC 1313 helped narrow down the masses of the black holes in the ULXs: the black hole closer to the center of the galaxy is about 70 to 100 times that of our sun. The other black hole is probably smaller, about 30 solar masses. Credit: JPL/NASA

Black holes can be petite, with masses only about 10 times that of our sun—or monstrous, boasting the equivalent in mass up to 10 billion suns. Do black holes also come in size medium? NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, is busy scrutinizing a class of black holes that may fall into the proposed medium-sized category.

"Exactly how intermediate-sized would form remains an open issue," said Dominic Walton of the California Institute of Technology, Pasadena. "Some theories suggest they could form in rich, dense clusters of stars through repeated mergers, but there are a lot of questions left to be answered."

The largest black holes, referred to as supermassive, dominate the hearts of galaxies. The immense gravity of these black holes drags material toward them, forcing the material to heat up and release powerful X-rays. Small black holes dot the rest of the galactic landscape. They form under the crush of collapsing, dying stars bigger than our sun.

Evidence for medium-sized black holes lying somewhere between these two extremes might come from objects called ultraluminous X-ray sources, or ULXs. These are pairs of objects in which a black hole ravenously feeds off a normal star. The feeding process is somewhat similar to what happens around , but isn't as big and messy. In addition, ULXs are located throughout galaxies, not at the cores.

The bright glow of X-rays coming from ULXs is too great to be the product of typical small black holes. This and other evidence indicates the objects may be intermediate in mass, with 100 to 10,000 times the mass of our sun. Alternatively, an explanation may lie in some kind of exotic phenomenon involving extreme accretion, or "feeding," of a black hole.

NuSTAR is joining with other telescopes to take a closer look at ULXs. It's providing the first look at these objects in focused, high-energy X-rays, helping to get better estimates of their masses and other characteristics.

In a new paper from Walton and colleagues accepted for publication in the Astrophysical Journal, the astronomers report serendipitously finding a ULX that had gone largely unnoticed before. They studied the object, which lies in the Circinus spiral galaxy 13 million light-years away, not only with NuSTAR but also with the European Space Agency's XMM-Newton satellite. Archival data from NASA's Chandra, Swift and Spitzer space telescopes as well as Japan's Suzaku satellite, were also used for further studies. "We went to town on this object, looking at a range of epochs and wavelengths," said Walton.

The results indicate the black hole in question is about 100 times the mass of the sun, putting it right at the border between small and medium black holes.

In another accepted Astrophysical Journal paper, Matteo Bachetti of the Institut de Recherche en Astrophysique et Planétologie and colleagues looked at two ULXs in NGC 1313, a known as the "Topsy Turvy galaxy," also about 13 million light-years way.

These are among the best-studied ULXs known. A single viewing with NuSTAR showed that the black holes didn't fit with models of medium-size black holes. As a result, the researchers now think both ULXs harbor small, stellar-mass black holes. One of the objects is estimated to be big for its size category, at 70 to 100 solar masses.

"It's possible that these objects are ultraluminous because they are accreting material at a high rate and not because of their size," said Bachetti. "If intermediate-mass black holes are out there, they are doing a good job of hiding from us."

Explore further: Unique SOS signal from pulled-apart star points to medium-sized black hole

Related Stories

Black hole naps amidst stellar chaos

Jun 11, 2013

(Phys.org) —Nearly a decade ago, NASA's Chandra X-ray Observatory caught signs of what appeared to be a black hole snacking on gas at the middle of the nearby Sculptor galaxy. Now, NASA's Nuclear Spectroscopic ...

NASA's NuSTAR catches black holes in galaxy web

Jan 08, 2013

(Phys.org)—NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, set its X-ray eyes on a spiral galaxy and caught the brilliant glow of two black holes lurking inside.

A link between black holes and new stars

Oct 23, 2013

Supermassive black holes (those with millions to billions of solar-masses) are thought to reside at the centers of most galaxies. These black holes must have undergone periods of intense accretion activity ...

Hubble views an old and mysterious cluster

Nov 14, 2013

The NASA/ESA Hubble Space Telescope has captured the best ever image of the globular cluster Messier 15, a gathering of very old stars that orbits the centre of the Milky Way. This glittering cluster contains ...

Recommended for you

Fermi finds a 'transformer' pulsar

13 hours ago

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

Transiting exoplanet with longest known year

Jul 21, 2014

Astronomers have discovered a transiting exoplanet with the longest known year. Kepler-421b circles its star once every 704 days. In comparison, Mars orbits our Sun once every 780 days. Most of the 1,800-plus ...

User comments : 0