Classical physics shown to be equal to quantum theory when it comes to unusual experiments with light beams

Oct 25, 2013
Reconstruction of photon trajectories (left) from the measured transverse momentum of light (right) in a vortex beam. Credit: Reproduced from Ref. 1 and licensed under CC by 3.0 at dx.doi.org/10.1088/1367-2630/15/7/073022. © 2013 K. Bliokh et al.

Quantum mechanics provides such a different description of the world compared to classical physics that even Albert Einstein had problems comprehending the implications of the theory. However, sometimes the predictions attributed to quantum-mechanical effects alone actually conform to the framework and predictions of classical physics. Franco Nori, Konstantin Bliokh and colleagues from the RIKEN Center for Emergent Matter Science have now derived a classical theory explanation for a light beam experiment previously explained only through complex quantum-mechanical arguments.

One of the fundamental principles in is that certain properties of a quantum-mechanical object, such as a photon or electron, cannot be measured simultaneously with precision. The position of these particles, for example, cannot be determined at the same time as its momentum: measuring one property causes a certain 'fuzziness' in the determination of the other.

A few years ago, an experiment in which both the path of photons and their interference patterns were measured simultaneously drew considerable attention. "This was because the experiment seemingly overcame the fundamental restrictions of quantum mechanics. Simultaneous measurements of the path information and interference picture are impossible in standard , like the simultaneous determination of the coordinates and momentum of a particle."

The results of the two-slit interference experiment—as it was known—were brought into line with quantum mechanics by arranging the measurements such that the results were averaged over several experiments conducted using a number of photons. This means that the precise position of a single photon was not actually measured. Instead, its properties were retrospectively deduced by making many measurements on identical particles.

Explaining these experiments required complicated quantum theory arguments. Nori and his colleagues have now presented an alternative viewpoint. "We give a classical-optics interpretation of this experiment and other related problems," says Bliokh.

Key to the researchers' classical interpretation is a description of the experiment based on the momentum density of light (Fig. 1). Because many are averaged, the results can be regarded in the context of the way light waves would be treated in classical theory.

This approach, according to the researchers, can also explain how a number of other effects seen in the complex propagation of classical light similarly provide of photon trajectories. Even though quantum physics can sometimes be very unintuitive, it is often surprising how many of these effects can also be explained by classical theory.

Explore further: Physicists design zero-friction quantum engine

More information: .Bliokh, K. Y., Bekshaev, A. Y., Kofman, A. G. & Nori, F. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. New Journal of Physics 15, 073022 (2013). dx.doi.org/10.1088/1367-2630/15/7/073022

add to favorites email to friend print save as pdf

Related Stories

Breaking the limits of classical physics

Jun 07, 2012

(Phys.org) -- With simple arguments, researchers show that nature is complicated. Researchers from the Niels Bohr Institute have made a simple experiment that demonstrates that nature violates common sense ...

Quantum physics mimics spooky action into the past

Apr 23, 2012

Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Vienna Center for Quantum Science and Technology (VCQ) ...

Recommended for you

Physicists design zero-friction quantum engine

13 hours ago

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 0