Horsetail spores found able to 'walk' and 'jump' (w/ Video)

Sep 11, 2013 by Bob Yirka report

(Phys.org) —A trio of researches working at University Grenoble in France has discovered that spores produced by horsetail plants are able to move around using "legs" known as elaters. In their paper published in Proceedings of the Royal Society B, the researchers describe the types of movement exhibited by the spores when subjected to changing humidity conditions.

Prior to this new research, it was known that the produced by horsetail plants (their method of reproduction) moved some distance from the plant that created it. Some accounts even suggested that the spores walked along the ground after being released by the plant. Intrigued by such stories, the researchers with this new effort decided to take a closer look.

To find out what was really going on with the microscopic spores, the researchers put them under a microscope and filmed (using a high-speed camera) what they found. The spores, they saw, which have a central bulb surrounded by four independent elaters, are heavily impacted by the amount of moisture in the air. During times of , the elaters curl up, much like —when the air dries out, so too do the elaters, allowing the curls to relax. It was this curling and relaxing that caused the spores to move in their environment—as the elaters unfurled against the ground, it caused the entire spore to move. More intriguingly, they found that on some occasions, the elaters uncurled so fast that it caused the entire spore to be pushed up into the air. Such jumps, the researchers noted, sometimes reached heights of centimeters—more than enough to allow the spore to leap into passing air currents, carrying them to a far flung locale.

The researchers also uncovered the mechanism behind the curling—the elaters are made of two different types of materials—one hard layer and one soft layer. The between the ability of the two layers to absorb moisture causes the curling and uncurling.

This video is not supported by your browser at this time.
This video shows the walk and jump of Equisetum spores.

Because of the simplicity of the mode of transport for the horsetail spore, the research team is now looking into ways that man-made objects might be made to move in the same ways. They envision self-spreading seeder devices or tiny probes that move themselves around crops testing for moisture or fertilizer levels.

Explore further: Researchers reveal which London Underground lines are mouldiest

More information: The walk and jump of Equisetum spores, Published 11 September 2013 DOI: 10.1098/rspb.2013.1465

Abstract
Equisetum plants (horsetails) reproduce by producing tiny spherical spores that are typically 50 µm in diameter. The spores have four elaters, which are flexible ribbon-like appendages that are initially wrapped around the main spore body and that deploy upon drying or fold back in humid air. If elaters are believed to help dispersal, the exact mechanism for spore motion remains unclear in the literature. In this manuscript, we present observations of the 'walks' and 'jumps' of Equisetum spores, which are novel types of spore locomotion mechanisms compared to the ones of other spores. Walks are driven by humidity cycles, each cycle inducing a small step in a random direction. The dispersal range from the walk is limited, but the walk provides key steps to either exit the sporangium or to reorient and refold. Jumps occur when the spores suddenly thrust themselves after being tightly folded. They result in a very efficient dispersal: even spores jumping from the ground can catch the wind again, whereas non-jumping spores stay on the ground. The understanding of these movements, which are solely driven by humidity variations, conveys biomimetic inspiration for a new class of self-propelled objects.

Related Stories

Mosses use 'mushroom clouds' to spread spores (w/ Video)

Jul 23, 2010

(PhysOrg.com) -- Scientists in the US have solved the mystery of how peat mosses manage to get their spores high enough to catch the wind, discovering that they produce vortex rings of air, like miniature ...

Family trees for yeast cells

May 13, 2013

Researchers at the Institute for Systems Biology in Seattle and the Luxembourg Centre for Systems Biomedicine (LCSB) at the University of Luxembourg have jointly developed a revolutionary method to analyse the genomes of ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

6 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

7 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...