Termite digestive-tract microorganisms: A resource to fuel the future

Aug 28, 2013
Termite digestive-tract microorganisms: a resource to fuel the future
What's going on in there? Representation of the D. colotermitum strain TAV2 and various classes of other microorganisms at work in the termite hindgut.

With increasing attention toward generating cost-effective biochemical conversion methods for producing biofuels, it helps to follow the leaders who have perfected the process. The mere Reticulitermes flavipes, or eastern subterranean termite, a famous feaster of lignocellulosic plant materials (e.g., decaying wood), relies on various microbial symbionts within its intestinal tract, such as Diplosphaera colotermitum TAV2 in the hindgut, to transform its carbon-rich diet into useable nutrition—its very own biofuel. However, there is a gap in understanding why TAV2, a member of the bacteria phylum Verrucomicrobia, is so at home in the seemingly inhospitable termite hindgut. Like other microbes in the termite gut, TAV2 can live in environments with much less oxygen than the 20% O2 concentration found in the atmosphere.

Scientists took aim at this trait and used comprehensive and integrative transcriptomic and proteomic approaches to identify genes and proteins being expressed by TAV2 in response to different O2 concentrations, as well as to build an experimentally tested metabolic map for TAV2 and provide a conceptual model of its functional role in the termite hindgut. This first integrated omics effort toward understanding the ecological role of a Verrucomicrobia isolate (in this case, TAV2) employed a variety of resources, including EMSL's accurate mass tag (AMT) approach, to uncover the novel ecological functions that TAV2 enables during lignocellulosic degradation within the termite gut.

Their work revealed that TAV2 can contribute to the metabolism of the termite hindgut microbial community via , amino-acid production, polysaccharide degradation, and O2 consumption. They also found that when TAV2 cells are maintained at , typical in parts of the termite hindgut, genes responsible for energy production and conversion, carbohydrate transport and metabolism, and replication and recombination are upregulated.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: Isanapong J, et al. 2013. Development of an ecophysiological model for Diplosphaera colotermitum TAV2, a termite hindgut Verrucomicrobium, The ISME Journal 7(9):1803–1813. DOI: 10.1038/ismej.2013.74.

add to favorites email to friend print save as pdf

Related Stories

It Takes 'Guts' to Explore the Next Proteomics Frontier

Jul 16, 2010

(PhysOrg.com) -- In the quest to find new sources of biofuel, researchers are studying one of the most efficient bioreactors on earth: the termite. The same insect that causes distress to homeowners with its ...

When viruses infect bacteria

Jun 30, 2011

(PhysOrg.com) -- Viruses are the most abundant parasites on Earth. Well known viruses, such as the flu virus, attack human hosts, while viruses such as the tobacco mosaic virus infect plant hosts.

Biologists bore into Canadian termite invasion

Dec 20, 2012

Scientists at Western University have discovered why termites wreak havoc on megacities like Toronto and Paris and how new findings may lead to possible pest controls.  

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.