Termite digestive-tract microorganisms: A resource to fuel the future

Aug 28, 2013
Termite digestive-tract microorganisms: a resource to fuel the future
What's going on in there? Representation of the D. colotermitum strain TAV2 and various classes of other microorganisms at work in the termite hindgut.

With increasing attention toward generating cost-effective biochemical conversion methods for producing biofuels, it helps to follow the leaders who have perfected the process. The mere Reticulitermes flavipes, or eastern subterranean termite, a famous feaster of lignocellulosic plant materials (e.g., decaying wood), relies on various microbial symbionts within its intestinal tract, such as Diplosphaera colotermitum TAV2 in the hindgut, to transform its carbon-rich diet into useable nutrition—its very own biofuel. However, there is a gap in understanding why TAV2, a member of the bacteria phylum Verrucomicrobia, is so at home in the seemingly inhospitable termite hindgut. Like other microbes in the termite gut, TAV2 can live in environments with much less oxygen than the 20% O2 concentration found in the atmosphere.

Scientists took aim at this trait and used comprehensive and integrative transcriptomic and proteomic approaches to identify genes and proteins being expressed by TAV2 in response to different O2 concentrations, as well as to build an experimentally tested metabolic map for TAV2 and provide a conceptual model of its functional role in the termite hindgut. This first integrated omics effort toward understanding the ecological role of a Verrucomicrobia isolate (in this case, TAV2) employed a variety of resources, including EMSL's accurate mass tag (AMT) approach, to uncover the novel ecological functions that TAV2 enables during lignocellulosic degradation within the termite gut.

Their work revealed that TAV2 can contribute to the metabolism of the termite hindgut microbial community via , amino-acid production, polysaccharide degradation, and O2 consumption. They also found that when TAV2 cells are maintained at , typical in parts of the termite hindgut, genes responsible for energy production and conversion, carbohydrate transport and metabolism, and replication and recombination are upregulated.

Explore further: How a molecular Superman protects the genome from damage

More information: Isanapong J, et al. 2013. Development of an ecophysiological model for Diplosphaera colotermitum TAV2, a termite hindgut Verrucomicrobium, The ISME Journal 7(9):1803–1813. DOI: 10.1038/ismej.2013.74.

add to favorites email to friend print save as pdf

Related Stories

It Takes 'Guts' to Explore the Next Proteomics Frontier

Jul 16, 2010

(PhysOrg.com) -- In the quest to find new sources of biofuel, researchers are studying one of the most efficient bioreactors on earth: the termite. The same insect that causes distress to homeowners with its ...

When viruses infect bacteria

Jun 30, 2011

(PhysOrg.com) -- Viruses are the most abundant parasites on Earth. Well known viruses, such as the flu virus, attack human hosts, while viruses such as the tobacco mosaic virus infect plant hosts.

Biologists bore into Canadian termite invasion

Dec 20, 2012

Scientists at Western University have discovered why termites wreak havoc on megacities like Toronto and Paris and how new findings may lead to possible pest controls.  

Recommended for you

Scientists see how plants optimize their repair

12 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

18 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

19 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0