Research team building a computer chip based on the human brain

Aug 15, 2013

Today's computing chips are incredibly complex and contain billions of nano-scale transistors, allowing for fast, high-performance computers, pocket-sized smartphones that far outpace early desktop computers, and an explosion in handheld tablets.

Despite their ability to perform thousands of tasks in the blink of an eye, none of these devices even come close to rivaling the computing capabilities of the . At least not yet. But a Boise State University research team could soon change that.

Electrical and computer engineering faculty Elisa Barney Smith, Kris Campbell and Vishal Saxena are joining forces on a project titled "CIF: Small: Realizing Chip-scale Bio-inspired Spiking Neural Networks with Monolithically Integrated Nano-scale Memristors."

Team members are experts in machine learning (), and memristor devices. Funded by a three-year, $500,000 National Science Foundation grant, they have taken on the challenge of developing a new kind of that works more like a brain than a traditional digital computer.

"By mimicking the brain's billions of interconnections and pattern recognition capabilities, we may ultimately introduce a in speed and power, and potentially enable systems that include the ability to learn, adapt and respond to their environment," said Barney Smith, who is the principal investigator on the grant.

The project's success rests on a memristor – a resistor that can be programmed to a new resistance by application of and remembers its new resistance value once the power is removed. Memristors were first hypothesized to exist in 1972 (in conjunction with resistors, capacitors and ) but were fully realized as nano-scale devices only in the last decade.

One of the first memristors was built in Campbell's Boise State lab, which has the distinction of being one of only five or six labs worldwide that are up to the task.

The team's research builds on recent work from scientists who have derived mathematical algorithms to explain the electrical interaction between brain synapses and neurons.

"By employing these models in combination with a new device technology that exhibits similar electrical response to the neural synapses, we will design entirely new computing chips that mimic how the brain processes information," said Barney Smith.

Even better, these new chips will consume power at an order of magnitude lower than current computing processors, despite the fact that they match existing chips in physical dimensions. This will open the door for ultra low-power electronics intended for applications with scarce energy resources, such as in space, environmental sensors or biomedical implants.

Once the team has successfully built an artificial neural network, they will look to engage neurobiologists in parallel to what they are doing now. A proposal for that could be written in the coming year.

Barney Smith said they hope to send the first of the new neuron chips out for fabrication within weeks.

This material is based upon work supported by the National Science Foundation under Grant No. CCF-1320987 to Boise State University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Explore further: Engineer leads effort to develop computer systems that can see better than humans

add to favorites email to friend print save as pdf

Related Stories

Chips that mimic the brain

Jul 22, 2013

No computer works as efficiently as the human brain – so much so that building an artificial brain is the goal of many scientists. Neuroinformatics researchers from the University of Zurich and ETH Zurich have now made ...

Ferroelectric memristors may lead to brain-like computers

Oct 04, 2012

(Phys.org)—As electrical pulses travel through the body's nervous system, they are passed from neuron to neuron by synapses. A synapse, which consists of a gap junction and the cell membranes of the transmitting and receiving ...

HP Labs find memristors can compute (w/ Video)

Apr 09, 2010

(PhysOrg.com) -- Researchers at HP Labs, the central research arm of HP, have discovered that a resistor with memory, a “memristor” can also perform logic operations. This means chips storing data may ...

Memristors: 'Computer synapse' analyzed at the nanoscale

May 16, 2011

(PhysOrg.com) -- Researchers at Hewlett Packard and the University of California, Santa Barbara, have analysed in unprecedented detail the physical and chemical properties of an electronic device that computer ...

Recommended for you

Hacking Gmail with 92 percent success

7 hours ago

(Phys.org) —A team of researchers, including an assistant professor at the University of California, Riverside Bourns College of Engineering, have identified a weakness believed to exist in Android, Windows ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Maxwells Demon
not rated yet Aug 15, 2013
It seems that some in the scientific community do still not want to grasp that the whole "memristor" story was a scientific hoax. Let's thus hope that the project's success does not really rest on the "memristor".