NASA crashes helicopter to study safety

Aug 22, 2013

NASA researchers will drop a 45-foot-long helicopter fuselage from a height of about 30 feet to test improved seat belts and seats and advance experimental techniques and crashworthiness data.

NASA is collaborating with the U.S. Navy, U.S. Army and Federal Aviation Administration on the Transport Rotorcraft Airframe Crash Test Bed full-scale crash tests at Langley's Landing and Impact Research Facility.

"We have instrumented a former Marine helicopter airframe with cameras and ," said lead test engineer Martin Annett. "Almost 40 cameras inside and outside the helicopter will record how 13 crash test dummies react before, during and after impact."

During the test, onboard computers will record more than 350 channels of data as the helicopter is swung by cables, like a pendulum, into a bed of soil. Just before impact, pyrotechnic devices release the suspension cables from the helicopter to allow free flight. The helicopter will hit the ground at about 30 mph. The impact condition represents a severe but survivable condition under both civilian and military requirements.

For the first time ever in any test, technicians installed a video game motion sensor in the helicopter. "We want to see if it is useful as an additional way to track the movements of the dummies," said test engineer Justin Littell.

The outside of the fuselage also is new for this test. Technicians painted one entire side in black polka dots over a white background—a photographic technique called full field photogrammetry. Each dot represents a data point. High-speed cameras filming at 500 images per second track each dot, so after over the drop researchers can plot and see exactly how the fuselage buckled, bent, cracked or collapsed under crash loads.

Another crash test of a similar helicopter equipped with additional technology, including composite airframe retrofits, is planned for next year. Both tests are part of the Rotary Wing Project in the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate.

The Navy provided the CH-46 Sea Knight helicopter fuselages, seats, crash test dummies and other experiments for the test. The Army contributed a litter experiment with a crash test dummy. The Federal Aviation Administration provided a side-facing specialized dummy and part of the data acquisition system. Cobham Life Support-St. Petersburg, a division of CONAX Florida Corporation, also contributed an active restraint system for the cockpit.

NASA will use the results of both tests in efforts to improve rotorcraft performance and efficiency, in part by assessing the reliability of high performance, lightweight composite materials. Researchers also want to increase industry knowledge and create more complete computer models that can be used to design better helicopters.

The ultimate goal of NASA rotary wing research is to help make helicopters and other vertical take-off and landing vehicles more serviceable—able to carry more passengers and cargo—quicker, quieter, safer and greener. Improved designs might allow helicopters to be used more extensively in the airspace system.

Explore further: JPL, Masten testing new precision landing software

More information: The following address for a live-stream will be activated just prior to the test: www.ustream.tv/channel/NASA-lrc

add to favorites email to friend print save as pdf

Related Stories

Chopper Crash Test a Smash Hit (w/ Video)

Mar 11, 2010

The second crash test of a small lightweight helicopter at NASA's Langley Research Center in Hampton, Va., was a smashing success, literally -- just as engineers had predicted.

Langley's bell UH-1H huey helicopter returns

Sep 01, 2011

NASA Langley's Bell UH-1H Huey helicopter returned to the Center Wednesday, Aug. 17, 2011, after a five-year long stint supporting space shuttle operations at Kennedy Space Center. The KSC work added another ...

NASA completes Dream Chaser flight test milestone

Jun 01, 2012

(Phys.org) -- Sierra Nevada Corporation (SNC) Space Systems successfully completed a "captive carry test" of its full-scale Dream Chaser orbital crew vehicle Tuesday, marking a new milestone in the company's ...

JPL, Masten testing new precision landing software

Aug 13, 2013

(Phys.org) —A year after NASA's Mars rover Curiosity's landed on Mars, engineers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., are testing a sophisticated flight-control algorithm that could ...

NASA Tweaks Tech Toolbox to Capture Tricky Rotor Results

Jun 07, 2010

(PhysOrg.com) -- "Smooth" and "quiet" are two words not usually associated with a helicopter ride, but NASA is working to change that. A full-size UH-60A Blackhawk helicopter rotor was the subject of tests ...

Recommended for you

Titan offers clues to atmospheres of hazy planets

48 minutes ago

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Having fun with the equation of time

58 minutes ago

If you're like us, you might've looked at a globe of the Earth in elementary school long before the days of Google Earth and wondered just what that strange looking figure eight thing on its side was.

The source of the sky's X-ray glow

20 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

End dawns for Europe's space cargo delivery role

Jul 27, 2014

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ScottyB
not rated yet Aug 22, 2013
i am amazed they dont already do this!