Researchers detect little-known protein in vertebrate fertilisation process

Aug 13, 2013

Researchers from Heidelberg have decoded a previously unknown molecular mechanism in the fertilisation process of vertebrates. The team of scientists at the Center for Molecular Biology of Heidelberg University identified a specific protein in frog egg extracts that the male basal bodies need, but that is produced only by the reproductive cells of the female. This "teamwork" between the egg and sperm is what makes embryo development possible. The results of the research were published in The Journal of Cell Biology.

Several years ago Prof. Dr. Oliver Gruß and his colleagues used sensitive mass spectrometry to begin looking for protein materials that were newly synthesised during meiosis, as new were formed, thus making cell division efficient. In the process, they identified a previously little-known protein. The so-called synovial sarcoma X breakpoint protein (SSX2IP) is indeed formed during meiosis, but not required for it. "At first we were at a loss to explain the function of SSX2IP", says Dr. Felix Bärenz, a member of Oliver Gruß' working group.

The breakthrough came when the researchers went one step further, simulating fertilisation of the frog's egg in the test tube. It was then they discovered that the SSX2IP produced after fertilisation and penetration of the egg by the sperm reanimated the basal bodies of the sperm. Because the egg loses its basal bodies as it matures, the reactivation of the male's basal bodies is vital for the embryo's development. They, in turn, build the embryo's division apparatus – the mitotic spindles – without whose precise function continued cell division and successful would be impossible.

"In a cell culture, we were also able to prove that SSX2IP plays a similar role in human cells", explains Prof. Gruß. Without the human SSX2IP protein, obvious errors occurred in the function of division apparatus. "It's therefore quite conceivable that defects in SSX2IP synthesis during maturation could lead to infertility or embryonic deformities", surmises the Heidelberg biochemist.

Explore further: Compound from soil microbe inhibits biofilm formation

Related Stories

'Kick-starting' male fertility

Sep 21, 2012

Adding a missing protein to infertile human sperm can 'kick-start' its ability to fertilise an egg and dramatically increase the chances of a successful pregnancy, a team of Cardiff University scientists have uncovered.

Important fertility mechanism discovered

Apr 24, 2013

Scientists in Mainz and Aachen have discovered a new mechanism that controls egg cell fertility and that might have future therapeutic potential. It was revealed by Professor Dr. Walter Stöcker of the Institute ...

Egg cells use unusual method of division

Aug 27, 2010

(PhysOrg.com) -- In a study of egg cells using time-lapse microscopy, researchers at the University of California, San Diego School of Medicine and the Ludwig Institute for Cancer Research have discovered an unusual property ...

Explainer: Why does female fertility decline?

Jun 17, 2013

Former Olympic swimmer Lisa Curry has announced she will undergo fertility treatment to try to have a baby with her partner of three years. News reports say doctors estimate she has less than a 10% chance of success. ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

12 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

15 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

16 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.