A cometary graveyard

Aug 02, 2013
These illustrations show the asteroid belt in the present day and in the early Solar System, located between the Sun (at centre) and four terrestrial planets (near the Sun) and Jupiter (at bottom left). The top image shows the conventional model for the asteroid belt; largely composed of rocky material. The middle image shows the proposed model, with a small number of active comets and a dormant cometary population. The lower diagram shows how the asteroid belt might have looked in the early Solar System, with vigorous cometary activity. Credit: Ignacio Ferrin / University of Anitoquia

A team of astronomers from the University of Anitoquia, Medellin, Colombia, have discovered a graveyard of comets. The researchers, led by Anitoquia astronomer Prof. Ignacio Ferrin, describe how some of these objects, inactive for millions of years, have returned to life leading them to name the group the 'Lazarus comets'. The team publish their results in the Oxford University Press journal Monthly Notices of the Royal Astronomical Society.

Comets are amongst the smallest objects in the Solar System, typically a few km across and composed of a mixture of rock and ices. If they come close to the Sun, then some of the ices turn to gas, before being swept back by the light of the Sun and the to form a characteristic tail of gas and dust.

Most observed comets have highly elliptical orbits, meaning that they only rarely approach the Sun. Some of these so-called long period comets take thousands of years to complete each orbit around our nearest star. There is also a population of about 500 short period comets, created when long period comets pass near Jupiter and are deflected in orbits that last anything between 3 and 200 years. Although uncommon events, comets also collide with the Earth from time to time and may have helped bring water to our planet.

The new work looked at a third and distinct region of the Solar System, the main belt of asteroids between the orbits of Mars and Jupiter. This volume of space contains more than 1 million objects ranging in size from 1 m to 800 km. The traditional explanation for asteroids is that they are the of a planet that never formed, as the movement of the pieces was disrupted by the strong of Jupiter.

In the last decade 12 active comets have been discovered in the asteroid main belt region. This was something of a surprise and the Medellin team set out to investigate their origin. The team, made up of Prof. Ferrin and his colleagues Profs. Jorge Zuluaga and Pablo Cuartas, now think they have an explanation.

"We found a graveyard of comets", exclaims Professor Ferrín. He adds: "Imagine all these asteroids going around the Sun for aeons, with no hint of activity. We have found that some of these are not dead rocks after all, but are dormant comets that may yet come back to life if the energy that they receive from the Sun increases by a few per cent."

Surprisingly, this can happy fairly easily, as the orbits of many objects in the asteroid belt are nudged by the gravity of Jupiter. The shape of their orbits can then change, leading to a decrease in the minimum distance between the object and the Sun (perihelion) and a slight increase in average temperature.

According to this interpretation, millions of years ago the main belt was populated by thousands of active comets. This population aged and the activity subsided. What we see today is the residual activity of that glorious past. Twelve of those rocks are true comets that were rejuvenated after their minimum distance from the Sun was reduced a little. The little extra energy they received from the Sun was then sufficient to revive them from the graveyard.

Prof. Ferrin describes the 12 active comets. "These objects are the 'Lazarus comets', returning to life after being dormant for thousands or even millions of years. Potentially any one of the many thousands of their quiet neighbours could do the same thing."

Explore further: After early troubles, all go for Milky Way telescope

More information: (Phys.org) —"The location of Asteroidal Belt Comets (ABCs) in a comets' evolutionary diagram: The Lazarus Comets", Ignacio Ferrín, Jorge Zuluaga, Pablo Cuartas, Monthly Notices of the Royal Astronomical Society, in press. The paper is available at mnras.oxfordjournals.org/conte… 30/mnras.stt839.full and a preprint can be seen at arxiv.org/ftp/arxiv/papers/1305/1305.2621.pdf

Related Stories

Research team explains 'Lazarus' comets

May 24, 2013

Astronomers from the University of Antioquia have discovered a graveyard of comets. These once-dormant comets, dubbed by astronomers as "The Lazarus comets," are now rejuvenated.

NASA's Wise finds mysterious centaurs may be comets

Jul 25, 2013

The true identity of centaurs, the small celestial bodies orbiting the sun between Jupiter and Neptune, is one of the enduring mysteries of astrophysics. Are they asteroids or comets? A new study of observations ...

Hubble brings faraway comet into view

Apr 23, 2013

(Phys.org) —The NASA Hubble Space Telescope has given astronomers their clearest view yet of Comet ISON, a newly-discovered sun grazer comet that may light up the sky later this year, or come so close to ...

Solar system ice: Source of Earth's water

Jul 12, 2012

Scientists have long believed that comets and, or a type of very primitive meteorite called carbonaceous chondrites were the sources of early Earth's volatile elements—which include hydrogen, nitrogen, ...

Three centaurs follow Uranus through the solar system

Jun 18, 2013

Astrophysicists from the Complutense University of Madrid have confirmed that Crantor, a large asteroid with a diameter of 70 km has an orbit similar to that of Uranus and takes the same amount of time to ...

Recommended for you

Image: NASA's SDO observes a lunar transit

15 hours ago

On July 26, 2014, from 10:57 a.m. to 11:42 a.m. EDT, the moon crossed between NASA's Solar Dynamics Observatory and the sun, a phenomenon called a lunar transit.

Image: Tethys in sunlight

15 hours ago

Tethys, like many moons in the solar system, keeps one face pointed towards the planet around which it orbits. Tethys' anti-Saturn face is seen here, fully illuminated, basking in sunlight. On the right side ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GSwift7
5 / 5 (1) Aug 02, 2013
Ahh, now THAT would make a really good target for human exploration. A dormant comet would be an excellent target of opportunity for exploitation for resources. Carbon, hyrdrogen and oxygen, and probably useful organics like ethane or methane. Not much sunlight out that far though, so there would be some challenges working there, not the least of which would be solar flares. And you couldn't just bring one of these back to lunar orbit because the extra sunlight would make it start outgassing and you wouldn't want to work around it then.