Research team solves Martian meteorite age puzzle

July 24, 2013

By directing energy beams at tiny crystals found in a Martian meteorite, a Western University-led team of geologists has proved that the most common group of meteorites from Mars is almost 4 billion years younger than many scientists had believed – resolving a long-standing puzzle in Martian science and painting a much clearer picture of the Red Planet's evolution that can now be compared to that of habitable Earth.

In a paper published today in the journal Nature, lead author Desmond Moser, an Earth Sciences professor from Western's Faculty of Science, Kim Tait, Curator, Mineralogy, Royal Ontario Museum, and a team of Canadian, U.S., and British collaborators show that a representative meteorite from the Royal Ontario Museum (ROM)'s growing Martian meteorite collection, started as a 200 million-year-old lava flow on Mars, and contains an ancient indicating a hidden layer deep beneath the surface that is almost as old as the solar system.

The team, comprised of scientists from ROM, the University of Wyoming, UCLA, and the University of Portsmouth, also discovered crystals that grew while the meteorite was launched from Mars towards Earth, allowing them to narrow down the timing to less than 20 million years ago while also identifying possible launch locations on the flanks of the supervolcanoes at the Martian equator.

More details can be found in their paper titled, "Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon."

The video will load shortly

Moser and his group at Western's Zircon & Accessory Phase Laboratory (ZAPLab), one of the few electron nanobeam dating facilities in the world, determined the growth history of crystals on a polished surface of the meteorite. The researchers combined a long-established dating method (measuring radioactive uranium/lead isotopes) with a recently developed gently-destructive technique at UCLA that liberates atoms from the crystal surface using a focused beam of oxygen ions.

Moser estimates that there are roughly 60 Mars rocks dislodged by impacts that are now on Earth and available for study, and that his group's approach can be used on these and a much wider range of heavenly bodies.

"Basically, the inner solar system is our oyster. We have hundreds of meteorites that we can apply this technique to, including asteroids from beyond Mars to samples from the Moon," says Moser, who credits the generosity of the collectors that identify this material and make it available for public research.

Explore further: Field Museum acquires important Martian meteorite

More information: Nature Doi: 10.1038/nature12341

Related Stories

Martian rock from Sahara desert unlike others

January 3, 2013

Scientists are abuzz about a coal-colored rock from Mars that landed in the Sahara desert: A yearlong analysis revealed it's quite different from other Martian meteorites. Not only is it older than most, it also contains ...

First meteorite linked to Martian crust

January 3, 2013

After extensive analyses by a team of scientists led by Carl Agee at the University of New Mexico, researchers have identified a new class of Martian meteorite that likely originated from the Mars's crust. It is also the ...

Studying meteorites may reveal Mars' secrets of life

May 1, 2013

In an effort to determine if conditions were ever right on Mars to sustain life, a team of scientists, including a Michigan State University professor, has examined a meteorite that formed on the red planet more than a billion ...

Moroccan desert meteorite delivers Martian secrets

October 11, 2012

(—A meteorite that landed in the Moroccan desert 14 months ago is providing more information about Mars, the planet where it originated. University of Alberta researcher Chris Herd helped in the study of the Tissint ...

Recommended for you

NASA missions harvest a passel of 'pumpkin' stars

October 27, 2016

Astronomers using observations from NASA's Kepler and Swift missions have discovered a batch of rapidly spinning stars that produce X-rays at more than 100 times the peak levels ever seen from the sun. The stars, which spin ...

A dead star's ghostly glow

October 27, 2016

The eerie glow of a dead star, which exploded long ago as a supernova, reveals itself in this NASA Hubble Space Telescope image of the Crab Nebula. But don't be fooled. The ghoulish-looking object still has a pulse. Buried ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.