How often do stars explode as exceptionally bright supernovae?

Jul 12, 2013
How often do stars explode as exceptionally bright supernovae?

It is not yet clear what gives rise to supernovae with a peak brightness many times the average, so-called superluminous supernovae (SLSNe), but since they are observable from further away than normal supernovae, a better understanding of these events might also make them a valuable additional 'standard candle' for distance measurements in the Universe. Using survey data from the ROTSE-IIIb telescope at the McDonald Observatory (Texas, US) that covered 500 square degrees of sky, a small team of international researchers – including CAASTRO member Dr Fang Yuan (ANU) – has now calculated the volumetric rate of SLSNe.

Having identified five suitable events, the first step in their calculations was to produce light curve templates and estimate pseudo-absolute magnitude distributions for both hydrogen-poor SLSN Type I and hydrogen-rich SLSN Type II. Monte Carlo simulations were then used to determine the efficiency of different surveys on the telescope in 'shortlisting' candidates in a given volume of sky. For the pooled SLSN-like data and at a of 0.2 (local volume), the team calculated a volumetric rate of 199 events Gpc-3 yr-1 h3 which, due to the small sample size, is subject to large statistical (199 +137 / -86) and systematic (199 +65 / -41) errors.

Their results approximately match the local rate of sub-energetic, long-duration gamma-ray bursts but are exceeded by the estimated rate of core collapse supernovae by a factor of 400 to 1300. These new calculations now offer an opportunity to determine the origin of SLSNe by comparing them with the formation rate of stars in the range at similar redshifts. And since peak magnitudes of SLSN Type I were found to be tightly clustered (M = -21.7 ±0.4), these events might be a promising 'standard candle' once sufficient sample sizes have been reached.

Explore further: New technique for isolating sunny-day 'light' scattering could help illuminate Universe's birth

More information: Quimby, R. et al. Wheeler in MNRAS 431 "Rates of Superluminous Supernovae at z ~ 0.2" arxiv.org/abs/1302.0911

Related Stories

Dark Energy Survey set to seek out supernovae

Jul 02, 2013

(Phys.org) —The largest ever search for supernovae – exploding stars up to 10 billion times brighter than the Sun – is beginning this August. For the next five years, the Dark Energy Survey (DES) will ...

Key link found in Cosmic Distance Ladder

Jun 20, 2013

(Phys.org) —When observing the bright explosion of a White Dwarf star in our neighbouring galaxy last year, researchers from The Australian National University collected the largest ever data set on what ...

Distant super-luminous supernovae found

Nov 01, 2012

(Phys.org)—Two 'super-luminous' supernovae - stellar explosions 10 to 100 times brighter than other supernova types - have been detected in the distant Universe.

Inconstant supernovae?

Nov 07, 2011

Given the importance of Type 1a supernovae as the standard candles which demonstrate that the universe’s expansion is actually accelerating – we require a high degree of confidence that those candles ...

Recommended for you

NASA telescopes set limits on space-time quantum 'foam'

14 hours ago

A team of scientists has used X-ray and gamma-ray observations of some of the most distant objects in the universe to better understand the nature of space and time. Their results set limits on the quantum ...

Shining message about the end of the Dark Ages

16 hours ago

An international team, including researchers from the Centre for Astronomy of Heidelberg University (ZAH), has discovered three "cosmic Methusalems" from the earliest years of the universe. These unusual stars are about 13 ...

The kinematics of merging galaxies

17 hours ago

The unprecedented sensitivity of space telescopes has powered a revolution over the past decade in our understanding of galaxies in the young universe during its first billion years of existence. These primitive ...

Hubble video shows shock collision inside black hole jet

May 27, 2015

When you're blasting though space at more than 98 percent of the speed of light, you may need driver's insurance. Astronomers have discovered for the first time a rear-end collision between two high-speed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.