Full genome map of oil palm indicates a way to raise yields and protect rainforest

Jul 24, 2013

A multinational team of scientists has identified a single gene, called Shell, that regulates yield of the oil palm tree. The fruit and seeds of the oil palm are the source of nearly one-half of the supply of edible vegetable oil worldwide, and provide one of the most promising sources of biofuel.

The discovery, the product of a multiyear effort to provide a high-quality full genome map of the oil palm plant and to scour the sequence for genes of importance to both science and industry, has major implications for agriculture and the environment.

"The discovery that regulation of the Shell gene will enable breeders to boost palm oil yields by nearly one-third is excellent news for the rainforest and its champions worldwide," says Datuk Dr. Choo Yuen May, the Director General of the Malaysian Palm Oil Board (MPOB), an agency of the Malaysian federal government.

The discovery was made by researchers at the MPOB in conjunction with scientists at St. Louis-based Orion Genomics. Also lending support were scientists in New York, at Cold Spring Harbor Laboratory (CSHL) and the American Museum of Natural History. The international team's work is detailed in two papers published online today in Nature.

"The discovery of Shell indicates a clear path toward more intensive use of already planted lands, and thus should lessen pressures to expand the land area devoted to oil palm, notably onto endangered rainforest land – a major concern for the environment and a rallying point for activists in recent years," says Robert A. Martienssen, Ph.D., scientific co-founder of Orion Genomics, who is also a professor of at CSHL.

"Mutations in Shell explain the single most important economic trait of the oil palm: how the thickness of its correlates to fruit size and oil yield," explains Dr. Rajinder Singh of the MPOB, first author of the Nature paper describing the Shell gene.

There are two species of oil palm, African (Elaeis guineensis) and South American (Elaeis oleifera). Together they account for 45 percent of the edible vegetable oil worldwide. Palm oil also has the best energy balance of any commercial product currently used in biofuel applications, yielding about 9 times the energy required to produce it, according to Dr. Martienssen.

The Shell gene is responsible for the oil palm's three known shell forms: dura (thick); pisifera (shell-less); and tenera (thin), a hybrid of dura and pisifera palms. Tenera palms contain one mutant and one normal version, or allele, of Shell, an optimum combination that results in 30% more oil per land area than dura palms.

How the discovery will affect plantation management and land use

The discovery of the Shell gene and its two naturally occurring mutations highlight new molecular strategies to identify seeds or plantlets that will become high-yielding palms before they are introduced into plantations.

Seed producers can now use the genetic marker for the Shell gene to distinguish the three fruit forms in the nursery long before they are field-planted. Currently, it can take six years to identify whether an oil palm plantlet is a high-yielding palm. Even with selective breeding, 10 to 15 percent of plants are the low-yielding dura form due to uncontrollable wind and insect pollination, particularly in plantations without stringent quality control measures.

"Accurate genotyping for enhanced oil yields will optimize and help stabilize the acreage devoted to oil palm plantations, providing an opportunity for the conservation of rainforest reserves," Martienssen explains.

The Malaysian government strongly supported the genome sequencing project for the nation's most important crop. The government halted the conversion of new forest land for agriculture, including palm oil, in the 1990s. According to the MPOB, the government has committed to preserve 50 percent of Malaysia's total land area as forest. To meet increased demand for , the government converted colonial rubber and cocoa plantations to oil palm plantations.

What the full genome sequences reveal

The discovery of Shell occurs in the context of a broader effort to map the genomes of both the African and South American oil palm species. One of the newly published maps is the 1.8 gigabase sequence of the E. guineensis African oil palm. It comprises nearly 35,000 genes, including the full set of oil biosynthesis genes and other transcriptional regulators highly expressed in the oil-rich palm fruit.

The researchers also created a draft sequence of the South American oil palm E. oleifera. Both palm species are in the Arecaceae family of flowering plants, which fossil evidence dates to the Cretaceous period, an estimated 140 to 200 million years ago. The investigators' comparison of the two maps enabled them to estimate that the species diverged at the old world- new world split.

Explore further: Threatened frogs palmed off as forests disappear

More information: DOI: 10.1038/nature12309
DOI: 10.1038/nature12356

Related Stories

Biofuels and biodiversity don't mix, ecologists warn

Jul 09, 2008

Rising demand for palm oil will decimate biodiversity unless producers and politicians can work together to preserve as much remaining natural forest as possible, ecologists have warned. A new study of the potential ecological ...

Recommended for you

More, bigger wildfires burning western US, study shows

15 hours ago

Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

totten
1 / 5 (2) Jul 24, 2013
Historical experience and accumulated evidence strongly suggests that any increases in crop productivity, as in this genomic improvement in oil palm trees, will do little to reduce rainforest destruction, in and of itself. Remember, crop productivity gains have been going on for many decades and it has done nothing to stem the expansion of crops into rainforests. Why? Because of unchecked rising demand by a growing population of better off people who can afford to purchase more of these commodities. The bottom line is, no oil palm, or other commodity, should be grown on intact ecosystems, but grown only on existing degraded lands.
Macrocompassion
not rated yet Jul 25, 2013
I too see little hope for the endangered species still living in what remains of the original rain forest. The greed of Man is stronger than his will to preserve the natural resources on this planet. Soon we will have nothing to show for 300 years of inspired science and wrongly applied technology.

More news stories

Six Nepalese dead, six missing in Everest avalanche

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...