Boat owners can fight barnacles with new eco-friendly method

Jul 04, 2013
Segelbåt III

Barnacles can be found in all marine environments and are a major problem for both small boats and large ships. Barnacles accumulate on the hulls and can reduce the fuel economy of a vessel by up to 40 per cent, increasing CO2 emissions accordingly.

While most that attach themselves to hulls – for example mussels and algae – can easily be scraped off, literally grow into the surface and form dense underneath the paint.

The most common method used to prevent fouling is to mix the paint with a poisonous substance. The poison is then released slowly from the painted hull to discourage invaders, and eventually ends up in the water to the detriment of other marine organisms. This is how for example tributyltin oxide (TBTO), a biocide used in the 1980s and 1990s, led to a global environmental disaster. TBTO was banned worldwide after it was discovered that the use was making oysters and similar animals infertile.

About 90 per cent of the anti-fouling hull paints used today are based on , causing large amounts of copper to be released into the seas and oceans.

'This type of environmental effect cannot be accepted in the long run,' says Pinori.

Digging their own grave in the paint

Now Pinori has found a new method. With the new method, the paint and the poison are modified so that the poison is kept inside the paint, minimising the release of it into the water. Instead, the barnacle's own ability to penetrate the paint is used. When the organisms attach to the surface, the poisoning begins.

'You can say that they dig their own grave in the paint,' says Pinori.

Blue panel

Zero emissions possible

The toxin used in the new type of paint is ivermectin – a molecule produced by the bacterium Streptomyces avermitilis. A good effect has been achieved with only one gram of per litre of paint, or a concentration of only .1 per cent. The effect lasts for many years and can replace the copper currently used in hull paints. The research indicates that only very small amounts of the substance leach into the water.

'My research shows that the small amounts that are released are unrelated to the effectiveness of the method. This means that if we can eliminate the leaching completely, the effect will not be sacrificed. Zero emissions will be our next goal. We're looking forward to continuing the development of this method within the EU project LEAF, Low Emission Anti-Fouling. It's a three-year project that SP has been granted together with Professor Elwing's group at the University of Gothenburg and other international partners,' says Pinori.

Explore further: Researchers create materials that reproduce cephalopods' ability to quickly change colors and textures

More information: Title of the doctoral thesis: Low Biocide Emission Antifouling Based on a Novel Route of Barnacle Intoxication. Link to the thesis: hdl.handle.net/2077/32814

Link to the project: www.leaf-antifouling.eu

add to favorites email to friend print save as pdf

Related Stories

New paints prevent fouling of ships' hulls

Jun 11, 2012

The colonisation of hulls by algae, barnacles, mussels and other organisms is a major problem for both pleasure boats and merchant tonnage. In a joint project, researchers at the University of Gothenburg and ...

Gene that causes barnacles to avoid ship hulls identified

Aug 16, 2010

The substance medetomidine has proved effective in preventing fouling of ship bottoms. Researchers at the University of Gothenburg have now identified the gene that causes the barnacle to react to the substance, ...

A coating that prevents barnacles forming colonies

Oct 04, 2011

It is not necessary for an effective anti-fouling coating to release toxins into the environment. Scientists at the University of Gothenburg have shown that it is instead possible to mix into the coating molecules ...

Conductive paint lands in pens and pots for creatives

May 26, 2013

London-based Bare Conductive Ltd. makes electrically conductive paint called Bare Paint. The substance allows the painting of "liquid wiring" on any surface. Except for skin, you can apply its paint on walls ...

Keeping ship hulls free of marine organisms

Dec 06, 2012

Special underwater coatings prevent shells and other organisms from growing on the hull of ships—but biocide paints are ecologically harmful. Together with the industry, researchers have developed more ...

Recommended for you

A dye with tunable optical characteristics

Sep 12, 2014

Researchers from RIKEN and the University of Tokyo have developed an organic dye molecule with tunable light-absorption and color characteristics. This development promises to open the door to the creation ...

User comments : 0