Can silver promote the colonization of bacteria on medical devices?

Jun 28, 2013
SEM micrographs of S. epidermidis IE186 adhered to Ag-TiCN coatings after 2 h and 24 h period of contact: adhesion and biofilm formation to Ag/Ti = 0 a1) and a2) respectively; to Ag/Ti = 0.37 b1) and b2) respectively; to Ag/Ti = 0.62 c1) and c2) respectively. (C) I. Carvalho et al. Sci.

Biomaterials are increasingly being used to replace human organs and tissues. Since biomaterials are susceptible to microbial colonization, silver is often added to reduce the adhesion of bacteria to biomaterials and prevent infections. However, a recent study by researchers in Portugal suggests that – in one material – increasing levels of silver may indirectly promote bacterial adhesion.

Published in the journal Science and Technology of Advanced Materials, the study examined how surface properties affect the adhesion of Staphylococcus epidermidis bacteria to silver-titanium carbonitride (Ag-TiCN) coatings used for hip implant applications.

Normally found on human skin and mucous membranes, Staphyloccus epidermidis is one of the main pathogens associated with prosthetic device infections. A nanocomposite thin film, titanium carbonitride is non-toxic to and features excellent wear resistance, high hardness and good corrosion resistance.

Previous studies have shown that the adhesion of bacteria to biomaterials can be affected by the surface properties of bacteria, the surface properties of the material, and environmental conditions. In this study, Isabel Carvalho and her colleagues found that as the silver content of Ag-TiCN films increased from 0 to 15 percent, the surface roughness of the films decreased from 39 nm to 7 nm, while the hydrophobicity of the surface increased.

In addition, the study found that surfaces that were less rough and more hydrophobic were associated with greater . This suggests that increasing levels of silver in Ag-TiCN thin films may promote bacterial adhesion via a hydrophobic effect.

Explore further: Graphene reinvents the future

More information: Carvalho, I. et al. Science and Technology of Advanced Materials, Vol. 14 (2013) p. 035009. DOI: 10.1088/1468-6996/14/3/035009

Related Stories

New low-cost, transparent electrodes

Jun 27, 2013

Indium tin oxide (ITO) has become a standard material in light-emitting diodes, flat panel plasma displays, electronic ink and other applications because of its high performance, moisture resistance, and capacity for being ...

Spinning up antibacterial silver on glass

Jun 27, 2013

The antibacterial effects of silver are well established. Now, researchers at Yonsei University in Seoul, Republic of Korea, have developed a technique to coat glass with a layer of silver ions that can prevent growth of ...

Recommended for you

Graphene reinvents the future

22 hours ago

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

Copper shines as flexible conductor

Aug 22, 2014

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

User comments : 0